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We show how to realize fast and high-fidelity quantum non-demolition qubit readout using longi-
tudinal qubit-oscillator interaction. This is accomplished by modulating the longitudinal coupling
at the cavity frequency. The qubit-oscillator interaction then acts as a qubit-state dependent drive
on the cavity, a situation that is fundamentally different from the standard dispersive case. Single-
mode squeezing can be exploited to exponentially increase the signal-to-noise ratio of this readout
protocol. We present an implementation of this longitudinal parametric readout in circuit quantum
electrodynamics and a possible multi-qubit architecture.
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Introduction – For quantum information processing,
qubit readout must be fast, of high-fidelity and ide-
ally quantum non-demolition (QND). In order to rapidly
reuse the measured qubit, fast reset of the measure-
ment pointer states is also needed. Combining these
characteristics is essential to meet the stringent require-
ments of fault-tolerant quantum computation [1]. A
common strategy, known as dispersive readout, relies
on coupling the qubit to an oscillator acting as pointer.
With the qubit modifying the oscillator frequency in a
state-dependent fashion, driving the oscillator displaces
its initial vacuum state to qubit-state dependent coher-
ent states. Resolving these pointer states by homodyne
detection completes the qubit measurement. This ap-
proach is used with superconducting qubits [2–6] and
quantum dots [7, 8], and is studied in a wide range of sys-
tems including donor-based spin qubits [9] and Majonara
fermions [10–12]. The same qubit-oscillator interaction is
used to measure the oscillator state in cavity QED with
Rydberg atoms [13].

In this Letter, we show that parametric modulation of
longitudinal qubit-oscillator interaction leads to a faster,
very high-fidelity and ideally QND qubit readout with
a simple reset mechanism. We moreover show how to
exponentially improve the signal-to-noise ratio (SNR) of
this measurement with the help of single-mode squeezed
input state on the oscillator. Like dispersive readout,
this approach is applicable to a wide variety of systems.
We start by presenting the performances of longitudinal
parametric readout and finally consider as an example an
implementation with transmon qubits [14].

While dispersive readout of σ̂z is based on transversal
qubit-oscillator coupling, Ĥx = gx(â†+â)σ̂x, here we pro-
pose to use longitudinal interaction, Ĥz = gz(â

† + â)σ̂z.
Despite the apparently minimal change we show that,
for several reasons, this leads to vastly improved qubit
readout. First, longitudinal coupling leads to an opti-
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FIG. 1. (a) Evolution in phase space of the intra-cavity field
â for longitudinal (full lines) and dispersive coupling (dashed
lines, dispersive shift χ = κ/2). Blue and red refer to qubit
states. The circles illustrate the position of the pointer states
at characteristic times until steady-state. (b) Pointer state
separation for the cavity output field âout as a function of
time. Vertical lines correspond to the circles of panel (a). (c)
Readout-reset cycle. After a measurement time τ , the sign
of the longitudinal modulation amplitude is changed during
a time τ to move the pointer state to the origin irrespective
of the qubit state.

mal separation of the pointer states. Indeed, Ĥz is sim-
ply the generator of displacement of the oscillator field
with a qubit-state dependent direction. The resulting
evolution from the initial oscillator vacuum state is illus-
trated in phase space by the full lines of Fig. 1(a). This
is to be contrasted to dispersive readout which, as illus-
trated by the dashed lines, leads to a complex path in
phase space and in particular to a poor separation of the
pointer states at short times (see colored dots). For this
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reason, even for identical steady-state separation of the
pointers, longitudinal parametric readout is significantly
faster than its dispersive counterpart.

A second advantage of the present approach is that it
also allows for larger pointer state separations. This is
a consequence of the fact that Ĥz commutes with the
measured qubit observable, σ̂z, resulting in an ideally
QND readout. The situation is different for the disper-
sive case simply because [Ĥx, σ̂z] 6= 0. In the dispersive
regime, where the qubit-oscillator detuning ∆ is large
with respect to gx, this non-QNDness manifests itself
with Purcell decay γκ = (gx/∆)2κ [15], where κ is the
oscillator damping rate, and with the experimentally ob-
served measurement-induced qubit transitions [16, 17].
For these reasons, the oscillator damping rate cannot
be made arbitrarily large and the measurement photon
number n̄ is typically kept well below the critical photon
number ncrit = (∆/2gx)2 [2]. In other words, dispersive
readout is typically slow (small κ) and limited to poor
pointer state separation (small n̄). Because longitudinal
coupling is genuinely QND, it does not suffer from these
two limitations [18, 19].

Longitudinal parametric readout – Under longitudinal
coupling, the qubit-cavity Hamiltonian reads (~ = 1)

Ĥ = ωrâ
†â+ 1

2ωaσ̂z + gzσ̂z(â
† + â), (1)

where ωr and ωa are respectively the cavity and qubit fre-
quencies, while gz is the longitudinal coupling strength.
The realization of multi-qubit gates based on this interac-
tion has already been discussed in the context of trapped
ions [20–23] and superconducting qubits [18, 19, 24]. In
steady-state, Eq. (1) leads to a qubit-state dependent
displacement of the cavity field of amplitude ±gz/(ωr +
iκ/2). In other words, a static longitudinal interaction is
of no consequence for the typical case where ωr � gz, κ.

Here we propose to render this interaction resonant
during readout by modulating the coupling at the res-
onator frequency: gz(t) = ḡz + g̃z cos(ωrt). In the in-
teraction picture and neglecting fast-oscillating terms we
obtain

H̃ = 1
2 g̃zσ̂z(â

† + â). (2)

This now leads to a large qubit-state dependent displace-
ment ±g̃z/κ. Even with a conservative modulation am-
plitude g̃z ∼ 10κ, the steady-state displacement corre-
sponds to 100 photons and the two qubit states are easily
distinguishable by homodyne detection. With this lon-
gitudinal coupling, there is no concept of critical photon
number and a large photon population is therefore not
expected to perturb the qubit. Moreover, as already il-
lustrated in Fig. 1(a), the pointer states take the optimal
path in phase space towards their steady-state separa-
tion. As shown in Fig. 1(b), this leads to a large pointer
state separation at short times.
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FIG. 2. (a) SNR in units of g̃z/κ as a function of integration
time τ . Longitudinal coupling (full green line) is compared to
dispersive coupling (dashed black line, χ = κ/2) for the same
steady-state separation, |g̃z| = |ε|. The dotted cyan line ac-
counts for Purcell decay in dispersive readout. The full brown
line shows the exponential improvement obtained for a single-
mode squeezed input state with e2r = 100 (20 dB). (b) Mea-
surement time τ required to achieve a fidelity F = 99.99 %
versus longitudinal coupling modulation. (c) Cavity damp-
ing rate to reach a fidelity of 99.99% in τ = 50 ns versus
intra-cavity photon number n̄ = (g̃z/κ)2 = 2(ε/κ)2. Squeez-
ing (full brown line) helps in further reducing the required
photon number or cavity decay rate. The squeeze strength is
optimized for each κ, with a maximum set to 20 dB reached
close to κ/2π = 1 MHz. In panels (b) and (c), the results
for the dispersive readout are stopped at the critical pho-
ton number obtained for a drive strength εcrit = ∆/

√
8gx for

gx/∆ = 1/10.

The consequences of this observation on qubit mea-
surement can be quantified with the signal-to-noise ra-
tio (SNR). This quantity is evaluated using M̂(τ) =√
κ
∫ τ
0

dt[â†out(t)+ âout(t)], the measurement operator for
homodyne detection of the output signal âout with a mea-
surement time τ . The signal is defined as |〈M̂〉1−〈M̂〉0|,
where {0, 1} refers to qubit state, while the impreci-
sion noise is [〈M̂2

N1(τ)〉 + 〈M̂2
N0(τ)〉]1/2 with M̂N =

M̂ − 〈M̂〉 [25]. Combining these expressions, the SNR
for the longitudinal case reads [26]

SNRz =
√

8
|g̃z|
κ

√
κτ

[
1− 2

κτ

(
1− e− 1

2κτ
)]
. (3)

This is to be contrasted to SNRχ for dispersive readout
with drive amplitude ε and optimal dispersive coupling
χ = g2x/∆ = κ/2 [25–27]

SNRχ =
√

8
|ε|
κ

√
κτ

[
1− 2

κτ

(
1− e− 1

2κτ cos 1
2κτ

)]
.

(4)

Both expressions have a similar structure, making very
clear the similar role of g̃z and ε, except for the cosine in
Eq. (4) that is a signature of the complex dispersive path
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in phase space. For short measurement times κτ � 1
we find a favorable scaling for longitudinal parametric
readout with SNRz ∝ SNRχ/κτ . This advantage is il-
lustrated in Fig. 2(a) showing the SNR versus integra-
tion time for longitudinal (full green line) and disper-
sive without Purcell decay (dashed black line) coupling.
Even for equal steady-state separation (g̃z = ε), this leads
to shorter measurement time for longitudinal coupling.
This is made clear in Fig. 2(b) showing the measurement
time required to reach a fidelity of 99.99% as a function
of g̃z/κ (or ε/κ for the dispersive case). When taking into
account the non-perturbative effects that affect the QND-
ness of dispersive readout, the advantage of the present
approach is made even clearer. This is illustrated by the
dotted light-blue line of Fig. 2(a,b) corresponding to the
dispersive case with Purcell decay. In this more realistic
case, longitudinal readout outperforms its counterpart at
all times.

Up to now, we have assumed equal pointer state sepa-
ration for the two readouts. As already mentioned, dis-
persive readout is however limited to measurement pho-
ton numbers well below ncrit. This is taken into account
in Figs. 2(b-c) by stopping the dispersive curves at ncrit
(black circle) assuming the typical value gx/∆ = 1/10.
Panel (b) makes it very clear that only longitudinal read-
out allows for measurement times < 1/κ. This is more-
over achieved for reasonable modulation amplitudes with
respect to the cavity linewidth. As a further illustra-
tion, panel (c) shows the cavity damping rate vs photon
number required to reach a fidelity of 99.99% in τ = 50
ns. Note that the dotted blue line corresponding to dis-
persive with Purcell is absent from this plot. In other
words, with dispersive readout it appears impossible to
achieve the above target fidelity and measurement time
in the very wide range of parameters of Figs. 2(c). On the
other hand, this is achievable with longitudinal readout
with quite moderate values of κ and n̄. Further speedups
are possible with pulse shaping [6, 28] and machine learn-
ing [29]. Because the pointer state separation is optimal
even at short time, the latter approach should be partic-
ularly efficient.

To allow for rapid reuse of the qubit, the cavity should
be returned to its grounds state ideally in a time � 1/κ
after readout. A pulse sequence achieving this for disper-
sive readout has been proposed but is imperfect because
of qubit-induced nonlinearity deriving from Ĥx [28]. As
illustrated in Fig. 1(c), in the present approach cavity re-
set is simply realized by inverting the phase of the mod-
ulation. Since Ĥz does not lead to qubit-induced nonlin-
earity, this reset is ideal. In practice, reset can also be
shorter than the integration time. It is also interesting to
point out that longitudinal parametric readout saturates
the inequality Γϕm ≥ Γmeas linking the measurement-
induced dephasing rate Γϕm to the measurement rate
Γmeas and is therefore quantum limited [26].

Single-mode squeezing – Another striking feature of
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FIG. 3. (a) Circuit QED implementation of longitudinal cou-
pling with a transmon qubit of Josephson energies EJ1 =
EJ(1 + d)/2, EJ2 = EJ(1 − d)/2 with d ∈ [0, 1]. (b) gz and
gx versus flux. Around Φx = 0, gz depends linearly on flux.
Spurious transverse coupling gx results from qubit asymme-
try. The full (dashed) lines correspond to Eqs. (5) and (6)
with d = 0 (d = 0.02). (c) Transmon frequency versus flux
for EJ/h = 20 GHz, EJ/EC = 67 and d = 0.02.

this new readout is that its SNR can be exponentially
improved by a single-mode squeezed input state on the
cavity. For this it suffices to chose the squeeze axis to
be orthogonal to the qubit-state dependent displacement
generated by gz(t). In Fig. 1(a), this corresponds to
squeezing along the vertical axis. With this choice, and
since the squeeze angle is unchanged under evolution with
Ĥz, the imprecision noise is exponentially reduced and
the signal-to-noise ratio simply becomes erSNRz, with r
the squeeze parameter [26]. This exponential enhance-
ment is apparent from the full brown line in Fig. 2(a)
and in the corresponding reduction of the measurement
time in Fig. 2(b). Note that by taking ḡz = 0, the cav-
ity field can be squeezed prior to measurement without
negatively affecting the qubit.

This exponential improvement is in stark contrast to
standard dispersive readout where single-mode squeezing
can lead to an increase of the measurement time [25, 30].
Indeed, under dispersive coupling, the squeeze angle un-
dergoes a qubit-state dependent rotation. As a result,
both the squeezed and the anti-squeezed quadrature con-
tributes to the imprecision noise. We note that the situa-
tion can be different in the presence of two-mode squeez-
ing [30] where an exponential increase in SNR can be
recovered by engineering the dispersive coupling of the
qubit to two cavities [25].

Circuit QED implementation – While this approach is
very general, we now turn to a possible realization in cir-
cuit QED [2]. Longitudinal coupling of a flux or transmon
qubit to a LC oscillator has already been discussed in
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Refs. [18, 19]. There, longitudinal coupling results from
the mutual inductance between a flux-tunable qubit and
the oscillator. As another example, we follow the general
approach developed in Ref. [31] and focus on a trans-
mon qubit [14] phase-biased by the oscillator. Fig. 3(a)
schematically represents a lumped version of this circuit.
In practice, the inductor can be replaced by a junction
array [32], both to increase the coupling and to reduce
the qubit’s flux-bias loop size. An in-depth analysis of an
alternative realization based on a transmission-line res-
onator can be found in Ref. [26].

The Hamiltonian of the circuit of Fig. 3(a) is similar to
that of a flux-tunable transmon, but where the external
flux Φx is replaced by Φx + δ with δ the phase drop at
the oscillator [33]. Taking the junction capacitances to
be equal and assuming for simplicity that Z0/RK � 1
with Z0 =

√
L/C and RK the resistance quantum, this

Hamiltonian can be expressed as Ĥ = Ĥr + Ĥq + Ĥqr. In

this expression, Ĥr = ωrâ
†â is the oscillator Hamiltonian

and Ĥq = ωaσ̂z/2 is the Hamiltonian of a flux-tunable
transmon written here in its two-level approximation [14].
The qubit-oscillator interaction takes the form Ĥqr =
gx(â† + â)σ̂x + gz(â

† + â)σ̂z with [26]

gz = −EJ
2

(
2EC
EJ

)1/2√
πZ0

RK
sin

(
πΦx

Φ0

)
, (5)

gx = dEJ

(
2EC
EJ

)1/4√
πZ0

RK
cos

(
πΦx

Φ0

)
, (6)

where EJ is the mean Josephson energy, d the Joseph-
son energy asymmetry and EC the qubit’s charging en-
ergy. Expressions for these quantities in terms of the
elementary circuit parameters are given in Ref. [26]. As
desired, the transverse coupling gx vanishes exactly for
d = 0, leaving only longitudinal coupling gz. Thanks to
the phase bias rather than inductive coupling, gz can be
made large [31]. For example, with the realistic values
EJ/h = 20 GHz, EJ/EC = 67 and Z0 = 50 Ω we find
gz/2π ≈ 135 MHz × sin (πΦx/Φ0). The flux dependence
of both gz (blue line) and gx with d = 0 (full red line)
and d = 0.02 (dashed red line) are illustrated in Fig. 3(b).
Modulating the flux by 0.05Φ0 around Φx = 0, we find
ḡz = 0 and g̃z/2π ∼ 21 MHz. This is accompanied by
a small change of the qubit frequency of ∼ 40 MHz, see
Fig. 3(c). Importantly, this does not affect the SNR [26].

Tolerance to imperfections – A finite gx is present for
d 6= 0. This is illustrated in Fig. 3(b) where for a real-
istic value of d = 0.02 [34] and the above parameters we
find gx/2π ≈ 13 MHz× cos (πΦx/Φ0). The effect of this
unwanted coupling can be mitigated by working at large
qubit-resonator detuning ∆ where the resulting disper-
sive interaction χ = g2x/∆ can be made very small. For
example, the above numbers correspond to a detuning of
∆/2π = 3 GHz where χ/2π ∼ 5.6 kHz. It is important to
emphasize that, contrary to dispersive readout, the lon-
gitudinal approach is not negatively affected by a large

detuning.
When considering higher-order terms in Z0/RK , the

Hamiltonian of the circuit of Fig. 3(a) contains a
dispersive-like interaction χzâ

†âσ̂z even at d = 0. For
the parameters already used above, we find χz/2π ∼ 5.3
MHz, a value that is not made smaller by detuning the
qubit from the resonator. However since it is not derived
from a transverse coupling, χz is not linked to any Pur-
cell decay. Moreover, it does not affect SNRz at small
measurement times [26].

In the absence of measurement, ḡz = g̃z = 0 and the
qubit is moreover parked at its flux sweet spot. Dephas-
ing due to photon shot noise or to low-frequency flux
noise is therefore expected to be minimal. Because of
the longitudinal coupling, another potential source of de-
phasing is flux noise at the resonator frequency which will
mimic qubit measurement. However, given that the spec-
tral density of flux noise is proportional to 1/f even at
high frequency [17], this contribution is negligible [26].
Multi-qubit architecture – A possible mutli-qubit ar-

chitecture consists of qubits longitudinally coupled to
a readout resonator (of annihilation operator âz) and
transversally coupled to a high-Q bus resonator (âx). The
Hamiltonian describing this system is

Ĥ = ωrzâ
†
zâz + ωrxâ

†
xâx +

∑
j

1
2ωaj σ̂zj

+
∑
j

gzj σ̂zj(â
†
z + âz) +

∑
j

gxj σ̂xj(â
†
x + âx).

(7)

Readout can be realized using longitudinal coupling while
logical operations via the bus resonator. An alternative
architecture taking advantage of longitudinal coupling is
discussed at length in Ref. [19]. Here, taking gzj(t) =
ḡz + g̃z cos(ωrt + ϕj) the longitudinal coupling becomes
in the interaction picture and neglecting fast-oscillating
terms

H̃z =
(

1
2 g̃z
∑
j

σ̂zje
−iϕj

)
âz + H.c. (8)

This effective resonator drive displaces the field to multi-
qubit-state dependent coherent states. For two qubits
and taking ϕj = jπ/2 leads to the four pointer states
separated by 90◦ from each other or, in other words, to
optimal separation evan at short times. Other choices of
phase lead to overlapping pointer states corresponding
to different multi-qubit states. Exemples are ϕj = 0 for
which |01〉 and |10〉 are indistinguishable, and ϕj = jπ
where these states are replaced by |00〉 and |11〉. This can
be exploited to create entanglement by measurement [35].
As a final example, with 3 qubits the GHZ state is ob-
tained with ϕj = j2π/3 [26].
Conclusion– We have proposed a new approach for

qubit readout based on modulation of longitudinal qubit-
oscillator coupling. This new mechanism has several ad-
vantages over the standard dispersive readout: optimal
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pointer state separation, purely QND thereby avoiding
Purcell decay and allowing large pointer state separation,
rapid reset and exponential improvement of the SNR us-
ing single-mode squeezing. This is applicable to a wide
variety of physical systems and we have used circuit QED
with transmon qubits as a concrete example.
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