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Five dimensional black hole solutions that describe the QCD crossover transition seen in (2 + 1)-
flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for
the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity
of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV ≤ T ≤ 300 MeV
and baryon chemical potentials 0 ≤ µB ≤ 400 MeV. Diffusive transport is predicted to be suppressed
in this region of the QCD phase diagram, which is consistent with the existence of a critical end point
at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon
chemical potential and find quantitative agreement with recent lattice results. The baryon transport
coefficients computed in this paper can be readily implemented in state-of-the-art hydrodynamic
codes used to investigate the dense QGP currently produced at RHIC’s low energy beam scan.
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1. Introduction. After more than a decade of intense ex-
perimental [1–5] and theoretical investigation, it is now
widely believed that the strongly interacting quark-gluon
plasma (QGP) formed in high energy ultrarelativistic
heavy ion collisions at RHIC and LHC behaves as a
nearly perfect relativistic fluid [6]. This surprising fea-
ture of the QGP may be best illustrated by the very
small value of its shear viscosity to entropy density ratio,
η/s ∼ 0.2, which has been extracted from comparisons
between viscous relativistic hydrodynamic modeling and
experimental data (for a recent review, see [7]). Neither
ordinary hadronic transport [8] nor weak coupling calcu-
lations [9] have been able to explain such a small value
for this ratio in QCD, though alternative explanations
have been proposed [10–13] that rely on the appearance
of a different set of degrees of freedom at the crossover
transition.

With the advent of the low energy beam energy scan at
RHIC, a new region in the QCD phase diagram [14, 15]
corresponding to a hot and baryon rich QGP is being
explored. The ultimate goal of this effort is to find un-
ambiguous experimental evidence for the existence of a
critical end point (CEP) [16, 17]. While definite experi-
mental proof of a CEP is still lacking (for a different point
of view, see [18]), the observed large degree of collectivity
displayed by hadrons with low transverse momentum in
low energy RHIC collisions [19] seems to be compatible
with the hypothesis that a baryon rich QGP may also
behave as a nearly perfect fluid [20]. This experimental
observation, together with the success of viscous hydro-
dynamic modeling in high energy collisions where baryon
density effects are small, boosted the interest of the theo-
retical community in applying hydrodynamics to describe
the dynamical evolution of the hot and baryon dense
strongly interacting QGP formed in these reactions [21–
26] where effects from a conserved baryon current cannot
be neglected. Given the fundamental role played by hy-

drodynamical transport coefficients in our understanding
of the QGP, one expects that the knowledge about the
novel transport coefficients associated with baryon trans-
port may play a key role in the comparison of hydrody-
namic calculations to the experimental data obtained in
low energy collisions.

In this case, the underlying effective model within
which these transport coefficients are to be computed
must not only appropriately describe the known equilib-
rium properties of the QGP at nonzero baryon densities
near the QCD crossover transition [27], but also necessar-
ily include from the outset its nearly perfect fluidity. Cur-
rently, the only consistent framework that is able to deal
with the required complexity behind the strong coupling
regime of non-Abelian gauge plasmas and their perfect
fluid-like features is the holographic gauge/gravity dual-
ity [28–30]. Indeed, a universal prediction of this frame-
work obtained a decade ago is that nearly perfect fluidity
behavior emerges as a universal property of such strongly
coupled plasmas and, in fact, η/s = 1/4π for a large class
of gauge theories [31]. Since then, the gauge/gravity du-
ality has been applied to obtain many important qual-
itative insights about the strongly-coupled QGP (for a
review, see [32]).

A few years ago it was realized [33] that holography
could also be used to shed light on the real time, dy-
namical properties of the strongly coupled QGP near the
crossover phase transition. The general idea put forward
in [33, 34] (and also in [35, 36] for a pure glue plasma)
is that, due to strong coupling effects, many of the prop-
erties of the QCD phase transition may be mimicked
by black hole solutions of a simple 5-dimensional holo-
graphic model that has the metric, gµν , and a scalar field
(the dilaton), φ, as the main dynamical degrees of free-
dom. This type of Einstein-Dilaton bottom-up model not
only displays the same thermodynamic properties as the
QGP at zero baryon chemical potential µB = 0 but also
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has nearly perfect fluidity built-in. Recently, this holo-
graphic setup has been used to investigate, in a quanti-
tative manner, the near-crossover behavior of a large set
of physical observables [37–49] (see also the study in the
Veneziano limit in [50]). While such models may not be
directly derived from string theory, a broader view of the
validity of the standard holographic dictionary may be
invoked, much like as in the case of condensed matter ap-
plications [51], to motivate the calculation of dynamical
properties of the QGP in a regime that had been other-
wise unaccessible to other nonperturbative approaches,
such as lattice QCD.

This is especially true in the case of the baryon rich
QGP formed in low energy heavy ion collisions. In this
case, lattice calculations for the temperature (T ) and
baryon chemical potential (µB) dependence of transport
coefficients may not be available for quite some time and
holography is a natural framework to perform such cal-
culations. In fact, this was the motivation behind the
study performed in [52] where a holographic Einstein-
Maxwell-Dilaton (EMD) model was used to understand
the energy loss and some thermalization properties of the
QGP at nonzero baryon density. This model, originally
proposed in [39, 40] to study a holographic critical end
point, has its parameters fully fixed by the equation of
state of the QGP at µB = 0, as in [34]. However, a strik-
ing finding discussed in detail in [52] was that, without
the introduction of new parameters, the model (after the
necessary revisions to accommodate more recent µB = 0
lattice data) can also quantitatively describe the available
lattice data [53] for the equation of state of the QGP near
the crossover transition with baryon chemical potentials
up to µB = 400 MeV. Furthermore, our model prediction
for the electric conductivity of the QGP at µB = 0 [44]
also gives a good description of recent lattice data [54]
for this observable (see Fig. 6 in [55] for a direct compar-
ison). These findings give a strong indication that this
holographic model may be used to make quantitative pre-
dictions for the out-of-equilibrium properties of the QGP
at moderate values of the baryon chemical potential.

Here we employ the EMD holographic model [39, 40,
52] to make the first realistic predictions for the T and µB
dependence of the baryon susceptibility, baryon conduc-
tivity, baryon diffusion constant, and thermal conduc-
tivity of the strongly interacting QGP at the crossover
transition. The baryon susceptibility is found to increase
with µB while the baryon conductivity is somewhat ro-
bust to the presence of a nonzero µB , though it displays a
nontrivial temperature dependence. On the other hand,
the thermal conductivity increases with µB . Moreover,
we predict that the baryon diffusion constant is reduced
with increasing baryon densities, which indicates that dif-
fusive transport in the strongly-coupled QGP is overall
suppressed in a baryon rich environment. We also cal-
culate the fourth-order baryon susceptibility at µB = 0
and find good quantitative agreement with recent lattice

data [56] near the crossover transition.
2. Holographic model. The EMD action reads

S =
1

2κ2

∫
M5

d5x
√
−g
[
R− 1

2
(∂µφ)2 − V (φ)− f(φ)

4
F 2
µν

]
,

(1)

where the gravitational constant κ2, the dilaton potential
V (φ), and the Maxwell-Dilaton coupling f(φ) shall be
dynamically fixed by lattice data at µB = 0.

We look for charged black holes of the form

ds2 = e2A(r)
[
−h(r)dt2 + d~x 2

]
+

dr2

h(r)
, (2)

φ = φ(r), and A = Aµdx
µ = Φ(r)dt, where the radial

position of the black hole horizon is given by the largest
root of the equation h(rH) = 0 and the boundary of
the asymptotically AdS5 space is at r → ∞. In [52] it
was discussed how to obtain numerical solutions for the
functions A(r), h(r), φ(r), and Φ(r) once V (φ) and f(φ)
are specified. The equations are solved with a pair of
initial conditions corresponding to the values of φ and
the derivative of the gauge field at the horizon. Different
choices for this pair of initial conditions translate into
different thermodynamical states of the plasma. The far
from the horizon, ultraviolet asymptotics are given by
[39, 40]: A(r) ≈ α(r), h(r) ≈ hfar0 , φ(r) ≈ φAe−να(r), and

Φ(r) ≈ Φfar
0 + Φfar

2 e−2α(r), with α(r) = r/
√
hfar0 + Afar

0

and ν = 4 −∆, where ∆ is the scaling dimension of the
operator dual to φ. The ultraviolet coefficients hfar0 , Φfar

0 ,
Φfar

2 , and φA enter in the expressions for the gauge field
theory observables, such as the temperature, the baryon
chemical potential, the entropy density, and the baryon
charge density, respectively:

T =
Λ

4πφ
1/ν
A

√
hfar0

, µB =
Φfar

0 Λ

φ
1/ν
A

√
hfar0

, s =
2πΛ3

κ2φ
3/ν
A

,

ρ = − Φfar
2 Λ3

κ2φ
3/ν
A

√
hfar0

, (3)

where Λ ≈ 831 MeV is the energy scale conversion factor
needed to express in physical units the quantities com-
puted using the black holes (this scale is obtained via
matching the dip of the speed of sound in the model with
that found on the lattice [46, 52]). The dilaton potential
and the gravitational constant are determined by a com-
parison to lattice data for the (2+1)-flavor QCD equation
of state at µB = 0 [53] while the Maxwell-Dilaton gauge
coupling is fixed by the lattice data for the baryon sus-
ceptibility at µB = 0 [57]. The results [52] are κ2 = 12.5
and

V (φ) = −12 cosh(0.606φ) + 0.703φ2 − 0.1φ4 + 0.0034φ6,

f(φ) =
sech(1.2φ− 0.69)

3 sech(0.69)
+

2e−100φ

3
. (4)
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Using (4) we numerically generated ∼ 105 black hole
solutions modeling a hot and dense plasma for several
values of T and µB . It was shown in [52] that this
holographic model is in very good agreement with the
lattice data [53, 57] for 130 MeV ≤ T ≤ 400 MeV and
0 ≤ µB ≤ 400 MeV. At larger temperatures the holo-
graphic model is not applicable for QGP phenomenology
(since it is not asymptotically free) and weak coupling
calculations provide a better description of lattice data
[58].
3. Model predictions. The n-th order baryon susceptibil-
ity is given by χBn = ∂np/∂µnB = ∂n−1ρ/∂µn−1B . In Fig.
1 we show our prediction for χB4 at µB = 0 compared
with lattice data from [56] (in the same figure we show
our fit to the lattice data for χB2 /T

2 at µB = 0, which
was used to determine f(φ) in (1)). One can see that the
model can correctly describe the departure of χB4 from
χB2 /T

2 for T ≥ 150 MeV, which has been interpreted as
a signature of deconfinement [59]; at lower temperatures
in the hadronic gas phase the holographic result for χB4
is below the lattice data, which illustrates the domain of
validity of the holographic approach.
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FIG. 1: (Color online) Second and fourth-order baryon
susceptibilities at µB = 0 in our holographic model

compared with lattice data from [56].

Our predictions for χB2 at different values of µB are
shown in the top left plot in Fig. 2. One can see that the
baryon susceptibility increases with increasing µB . This
behavior can be later verified by lattice QCD calcula-
tions. We also point out that predictions for the isother-
mal compressibility, ν−1T = ρ (∂p/∂ρ)T , can be directly
obtained using our results for χB2 and ρ via νT = χB2 /ρ

2

[60].
We employ linear response theory to compute the

baryon conductivity in a holographic setting [61]. One
considers linearized perturbations around the back-
ground (2) and calculates retarded 2-point functions
of gauge and diffeomorphism invariant combinations of
these perturbations, which are then associated with
transport coefficients via Kubo formulas. As discussed
in [40], due to spatial isotropy each spatial component

of the Maxwell perturbation, ai, i = x, y, z, satisfies the
same decoupled equation of motion and we focus on the
x̂-direction (the same result will also hold for the ŷ and
ẑ-directions), a ≡ ax. Taking a plane wave Ansatz for
the perturbation with frequency ω and zero spatial mo-
mentum, which is sufficient for calculating the DC con-
ductivity (i.e, the ω → 0 limit of the spatially uniform
conductivity tensor), one obtains the equation of motion
[40]

a′′(r) +

(
2A′(r) +

h′(r)

h(r)
+
f ′(φ)

f(φ)
φ′(r)

)
a′(r)

+
e−2A(r)

h(r)

(
ω2

h(r)
− f(φ)Φ′(r)2

)
a(r) = 0. (5)

The Kubo formula for the DC conductivity in phys-
ical units is (excluding the delta function present in
translationally-invariant systems at finite density [62])

σB = − Λ

2κ2φ
1/ν
A

lim
ω→0

h(r)f(φ)e2A(r)Im [a∗(r, ω)a′(r, ω)]

ω
,

(6)

where the expression hf(φ)e2AIm [a∗a′] corresponds to
a radially-conserved flux such that (6) may be evalu-
ated at any value of the radial coordinate, r. In (6),
following the prescription proposed in [63] to calculate
retarded propagators in holography, we consider on-shell
configurations of the vector perturbation corresponding
to in-falling modes at the black hole horizon which are
normalized to unity at the boundary. Then, one may
solve (5) for a large grid of initial conditions, plug the so-
lutions with the above specified boundary conditions in
the Kubo formula (6), and obtain the baryon DC conduc-
tivity as a function of temperature and baryon chemical
potential.

The corresponding predictions for this transport coef-
ficient are displayed in the top right plot in Fig. 2. We
find that the dense QGP at the phase transition is not a
good baryon conductor. For instance, in the region of the
(T, µB)−plane considered here, the ratio T 2σB/η < 0.05
in our calculations, which is roughly an order of magni-
tude lower than recent kinetic theory results [64]. One
can see that σB/T varies significantly with T in this
regime and that a simple conformal approximation (the
straight line in this plot) would completely miss the im-
portant effects of the crossover transition. One can also
see that above T ∼ 190 MeV the baryon conductivity is
slightly reduced as one increases the chemical potential
with the opposite behavior being observed below that
temperature (the same qualitative behavior was found in
[40]).

More importantly, the overall dependence of σB/T
with µB is relatively small even though this class of
models displays a CEP at larger densities. This is in
agreement with the fact that holographic models gener-
ally correspond to the type B dynamic universality class
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FIG. 2: (Color online) Baryon susceptibility (top left), baryon DC conductivity (top right), baryon diffusion constant

(bottom left), and thermal conductivity (bottom right) as functions of the temperature for different values of the baryon

chemical potential. The corresponding conformal values attained at large T (and µB = 0) are also shown.

[65] as pointed out in [66] and, thus, this transport co-
efficient should remain finite as one approaches a CEP.
Even though QCD has been argued to belong to the type
H dynamic universality class [67], for the values of µB
considered in this work (that are not yet in the critical
region) there may not be much difference between H and
B classes [66] when it comes to the fluid properties of
the system. In fact, the expected dynamical critical ex-
ponent for the shear viscosity in QCD xη ∼ 0.054 [67]
is small, which will not spoil the perfect fluidity of the
QGP in low energy collisions. Thus, holographic models
in which η/s does not show singular behavior [66] may be
applicable to study the perfect fluid transport properties
of the QGP at not so large baryon densities (outside the
critical region). In fact, we note that χB2 diverges at the
CEP while the baryon diffusion constant (to be discussed
below) vanishes for both H and B classes.

As shown in [68], the baryon diffusion may be calcu-
lated using the Nernst-Einstein’s relation, DB = σB/χ

B
2 .

Our results for this transport coefficient are shown in the
bottom left plot in Fig. 2. We note that baryon diffusion
already at µB = 0 is predicted to vary significantly across
the crossover transition approaching its conformal limit
[61] only at large temperatures. Furthermore, this plot
shows that there should be a significant suppression of
baryon diffusion in a baryon rich plasma, even before one
reaches a (putative) CEP. This precocious suppression is

a consequence of the robustness of σB to the presence of
a nonzero µB and the enhancement of χB2 .

The bottom right panel in Fig. 2 shows our results
for the thermal conductivity at the crossover transition
for several values of µB . Following [60], this may be

calculated as λT = (σB/T ) [(ε+ p)/ρ]
2
. One can see that

this transport coefficient increases with µB and that its
conformal limit [69] is only reached at temperatures T �
300 MeV.

Finally, we point out that in hydrodynamic applica-
tions a convenient expression for the dissipative current
is J = −κB∇(µB/T ) with κB = TσB [70] and, thus, the
results for the baryon conductivity presented here can
be readily used to investigate baryon transport effects on
the QGP in realistic hydrodynamic calculations (tabu-
lated data for σB(T, µB) follow attached as an ancillary
file).

4. Conclusions. In this work, the baryon transport
properties of a baryon rich QGP near the crossover
phase transition were computed holographically using 5-
dimensional black holes which quantitatively mimic the
thermodynamics of (2+1)-flavor lattice QCD data at zero
and nonzero baryon chemical potential [52]. We made
predictions for the baryon susceptibility, the baryon DC
conductivity, the baryon diffusion constant, and the ther-
mal conductivity of the strongly coupled quark-gluon
plasma in the range of temperatures 130 MeV ≤ T ≤
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300 MeV and baryon chemical potentials 0 ≤ µB ≤
400 MeV. Baryon diffusive transport is predicted to be
precociously suppressed in this region of the QCD phase
diagram even though a critical end point could only ap-
pear in this model at much larger baryon densities. We
also calculated the fourth-order baryon susceptibility at
zero chemical potential and found quantitative agreement
with recent lattice results around the crossover region.
The transport coefficients computed in this paper can
be readily implemented in state-of-the-art hydrodynamic
models used to investigate the dense QGP currently pro-
duced at RHIC’s low energy beam scan or at the CBM
experiment at the future FAIR facility at GSI.
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