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A protocol is discussed for preparing a spin chain in a generic many-body state in the asymptotic
limit of tailored non-unitary dynamics. The dynamics require the spectral resolution of the target
state, optimized coherent pulses, engineered dissipation, and feedback. As an example, we discuss
the preparation of an entangled antiferromagnetic state, and argue that the procedure can be applied
to chains of trapped ions or Rydberg atoms.

The robust generation of entangled states is a corner-
stone in quantum technological applications. Multipar-
tite entanglement, in fact, plays a crucial role in var-
ious tasks of quantum information and communication
[1–4], and can enable one to achieve unprecedented lev-
els of precision in sensor systems [5] and metrology [6].
High-fidelity generation of multi-partite entangled states
has been demonstrated with protocols based on deter-
ministic operations [7]. These protocols realize dynamics
which couple an initial state to the target state with a
sequence of unitary operations. Their performance be-
comes more challenging as the number of components N
increases. In fact, this often implies a larger number of
high-fidelity operations, which makes the protocol more
sensitive to parameter fluctuations and to disorder, and
requires longer time scales, over which the detrimental
effects of intrinsic noise and decoherence become more
relevant. This situation has motivated the search for al-
ternative strategies.

One promising approach is based on engineering noise
[8] and dissipation [9–12] in order to drive a many-body
system towards the desired non-classical target state.
Protocols based on this idea are often denoted by quan-
tum reservoir engineering (QRE), and their hallmark is
the robustness against parameter fluctuations, which re-
sults from the non-unitary nature of the processes that
pump the system into the target state. When based on
dissipation, they can be considered a many-body gen-
eralization of optical pumping, originally proposed by
Kastler for creating spin polarized atomic ensembles by
means of spontaneous decay [13]. As in optical pumping,
the target state is stable, effectively decoupled from the
mechanism which pumps out all other states involved
in the dynamics, but fed by the dissipative processes
[14, 15]. Under these premises the population of the tar-
get state will increase asymptotically towards unity.

The formal procedure for implementing QRE is usually
based on constructing a Liouvillean L for the density ma-
trix ρ of the system, for which the target state %T is the
unique stationary state, i.e. L%T = 0 [12, 16]. When
%T = |ψT 〉 〈ψT |, then the condition can often be cast in
terms of rate equations, which couple the population of

the target state, PT = Tr{%T ρ(t)}, with the populations
Pn of the states |ψn〉, forming together with |ψT 〉 a com-
plete and orthogonal basis in the state space. Denoting
by Γn→m > 0 the rate coefficients for the transitions
|ψn〉 → |ψm〉, the equation for PT reads

ṖT = −ΓTPT +
∑
n 6=T

Γn→TPn , (1)

and the loss rate of state |ψn〉 is Γn =
∑
m Γn→m. The

objective is to achieve PT → 1 as t → ∞. From con-
siderations based on detailed balance, it can be veri-
fied that a necessary condition for efficient production
of %T is Γn � ΓT for n 6= T . It is sufficient when
minn 6=T,m(Γn→m) � ΓT , which can be reached by ex-
ploiting symmetries of the dynamics [17]. This idea is
at the basis of several proposals for dissipatively pump-
ing spin or harmonic-oscillator systems into bi-partite
and into specific multi-partite entangled states; examples
are found in Refs. [14, 15, 18–26]. Experimental demon-
strations include realizations with trapped ions [27–29],
atomic ensembles [30], and superconducting qubits [31].
The identification of the procedure, however, becomes
more complex for arbitrary multi-partite entangled tar-
get states. This calls for the development of viable proto-
cols for the dissipative preparation of a generic entangled
state of a many-body system.

Here we discuss such a procedure. Our idea is to tailor
the excitation spectrum of the many-body system, such
that the target state is an eigenstate and all transitions
between pairs of states can ideally be individually ad-
dressed. Engineered dissipation allows one to perform
irreversible population transfer, in order to construct dy-
namics as in Eq. (1). Transitions from the target state
are far off resonance from all pumping processes, so that
the outcoupling rate ΓT is sufficiently small. By repeat-
edly applying a sequence of pulses that empty all other
states, the system is pumped into the target state, with
an asymptotic fidelity that depends on the ability to tai-
lor the transition rates. This procedure generalizes a
method for quantum-state preparation of molecules [32]
to many-body systems. It provides a complementary ap-
proach to the one proposed in Ref. [33]. In addition, in
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order to counteract noise and decoherence, which become
more and more important as the number of components
increases, measurements followed by feedback operations
are built into the pulse sequence which restore the effec-
tiveness of the procedure for long evolution times.

We illustrate the procedure by discussing the prepara-
tion of a spin chain in the entangled antiferromagnetic
state,

|ψT 〉 = (| ↑↓↑↓ . . .〉+ | ↓↑↓↑ . . .〉) /
√

2 , (2)

where | ↑〉 and | ↓〉 are the two energy eigenstates of a
(pseudo) spin 1/2, separated by ~ω0. For N = 2 ions,
|ψT 〉 is a triplet (Dicke) state, which can be perfectly
decoupled from collective spin excitations via quantum
interference processes [34]. One can thus construct dy-
namics for which |ψT 〉 (or the corresponding singlet state)
is stationary; examples are in Refs. [21, 23, 35, 36]. For
N > 2, however, this procedure cannot be directly ap-
plied, since |ψT 〉 is no longer a Dicke state.

In order to realize non-unitary dynamics of which |ψT 〉
is the stationary state, one could construct a harmonic
Hamiltonian of which |ψT 〉 is the ground state. Dissipa-
tive preparation into the target state would then proceed
by means of a generalization of sideband cooling [37]. Im-
plementing these dynamics with spins would in general
require one to work with an equidistant energy spectrum
whose excitations are collective spin states, thus in gen-
eral Dicke states. It has the drawback that, as N grows,
the number of undesired ”dark states” that are decoupled
via quantum interference increases and that disorder and
inhomogeneities may render the spectrum anharmonic.

Instead, we choose a Hamiltonian whose spectrum is
purposely tailored to be anharmonic and of which |ψT 〉 is
an eigenstate, but not necessarily the ground state. The
interaction Hamiltonian

H
(N)
int =

N−1∑
j=1

Jjσ
z
jσ

z
j+1 (3)

serves this purpose, with Jj > 0 and σzj the Pauli op-
erator for spin j. Hamiltonian (3) identifies the states
ψn (including |ψT 〉) that enter the rate equations and
whose coefficients Γn→m shall be engineered. The tran-
sitions |ψn〉 → |ψm〉 are driven resonantly by laser pulses,
whereby the detunings ∆ from the spin transitions vary
from pulse to pulse. The corresponding spin Hamiltonian
in the rotating frame reads

H0(∆) = −~∆
∑
j

σzj /2 , (4)

of which |ψT 〉 is eigenstate for N even [38]. The resonant
transitions for N = 4 are shown in Fig. 1.

The desired asymmetry in the coefficients Γn→m and
Γm→n is achieved by means of engineered dissipation,
along the lines of Ref. [21]. It is realised by first en-
tangling a single spin with an ancilla, in our example a
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FIG. 1: Procedure for preparing the spins of a four-ion chain
in the entangled state (| ↑↓↑↓〉+ | ↓↑↓↑〉)/

√
2 via non-unitary

dynamics. (a) The spins interact with one another (Jj) and
with an ancilla, here a harmonic oscillator of frequency ωt.
(b) The energy spectrum of the spin chain is tailored by con-
trolling the couplings Jj (here, J2 > J1 and only the |n = 0〉
manifold of the ancilla is shown). Arrows indicate the pulses
which resonantly pump the spins into the target state; each
arrow represents two operations, as illustrated in (c): one co-
herent pulse (solid) that entangles spins and ancilla, and one
dissipative pulse (dashed) that makes the transfer from state
to state irreversible. In (d) the pulse frequencies correspond-
ing to the arrows in (b) are displayed, using the same colour
code. ∆ denotes the detuning from ω0. The dashed arrows
in (b) indicate transitions driven by the ”blue” and ”green”
pulses that resonantly pump the spins into a state that is not
the target. This state is depopulated by the ”grey” pulse.
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harmonic oscillator, followed by dissipation on the an-
cilla (see Fig. 1(a,c)). Denoting by |0〉 and |1〉 the os-
cillator’s ground and first excited state, irreversible pop-
ulation transfer from |ψn〉 to |ψm〉 is performed by first
coherently driving the transition |ψn〉|0〉 → |ψm〉|1〉, and
then damping the mode by an external reservoir that in-
duces the transition |ψm〉|1〉 → |ψm〉|0〉.

These dynamics can be realized for chains of Rydberg
atoms [39] or of trapped ions [40–42]. The ancilla may
be a lossy cavity mode coupling with the spins [21], or a
collective vibrational mode of an ion chain, sympatheti-
cally cooled to the ground state as in Ref. [28]. For ions,
Hamiltonian (3) is implemented by tailoring the coupling
between the internal and the external degrees of freedom
of the chain [40]. The coupling coefficients Jj depend on
the interparticle distances. Figure 1(a) shows the specific
case of N = 4 ions in a Paul trap. Moreover, coupling
to next neighbours must be included in Eq. (3). This
modifies the spectrum and thus the choice of the pulse
frequencies, but is not relevant for the purpose of the
discussion below.

The coherent laser-driven dynamics which entangle
spins and ancilla are described by the Hamiltonian

H(∆) = H
(N)
int +H0(∆)+~

∑
j

gjσ
x
j (a+a†)+~ωta†a . (5)

Here, gj is the Rabi frequency, whose value is sufficiently
small in order to drive only resonant transitions, and a
is the annihilation operator of the harmonic oscillator
at frequency ωt. The oscillator is cooled at rate γ to a
steady-state excitation number n̄ � 1; the non-unitary
cooling dynamics are described by the superoperator [43]

Lγρ = γ(n̄+ 1)D[a]ρ+ γn̄D[a†]ρ , (6)

where D[X] is a functional of the operator X such that
D[X]ρ = XρX† − (X†Xρ+ ρX†X)/2, and ρ is the den-
sity matrix of spins and ancilla. Pumping into the target
state is realized by sequences of pulses, whose compo-
nents correspond to the map T (∆, t) = eLγtγ eLcoh(∆)t,
which alternates Liouvillian Lcoh(∆)ρ = [H(∆), ρ]/(i~)
for time t with engineered dissipation as in Eq. (6) for
time tγ . The protocol iterates the concatenated map

T = T (∆j , tj)T (∆j−1, tj−1) . . . T (∆1, t1) , (7)

where the sequence, the detunings and the durations tj
are optimized to drive the system into the desired asymp-
totic state with close-to-unit fidelity. Over the time scale
of a sequence, the dynamics can be cast in terms of a rate
equation as in Eq. (1) and the choice of the detunings re-
sults in tailoring the effective coefficients. The idea might
be regarded as a dissipative extension of the Law-Eberly
protocol [44], originally developed for arbitrary quantum
state preparation by means of coherent dynamics, and
based on identifying the individual steps which determin-
istically connect an initial and a final state. Indeed, with
our procedure, we achieve %T = lim`→∞ Tran{T `ρ(0)}

for a certain set of initial states ρ(0), where Tran de-
notes the trace over the ancilla’s degrees of freedom.
Nevertheless, we find that the pumping efficiency con-
siderably drops if the initial state is an equal statistical
mixture and/or if the Rabi frequencies gj vary signif-
icantly. In fact, in these cases pumping happens into
both |ψT 〉 and the degenerate antisymmetric superpo-

sition (| ↑↓↑↓ . . .〉 − | ↓↑↓↑ . . .〉) /
√

2. One remedy could
be to alternate Hamiltonian H(∆) with another pump-
ing Hamiltonian, assuming one can engineer the spatial
gradient of the pulse phase, but this approach is not ro-
bust against decoherence and fluctuations in the values
of the couplings gj .

Our solution that enables pumping from arbitrary ini-
tial states into the target state is to include in the se-
quence a parity-correcting operation based on the proto-
col of Refs. [45, 46]. It performs a parity measurement,
described by the operator

Π = σx1 . . . σ
x
N , (8)

followed by a conditional operation on the system which
corrects the parity in the case that it is not the desired
one. The corresponding dynamics can be realized by
means of an ancilla, whose relevant states are denoted
by |A〉 and |B〉: given the state of the system is |ψ〉 and
the ancilla is prepared in |A〉, first the unitary map

|ψ〉|A〉 → (1 + Π)√
2
|ψ〉|A〉+

(1−Π)√
2
|ψ〉|B〉

is applied; this map is the identity if the state possesses
even parity, while if the state has no definite parity it
becomes entangled with the ancilla. If in a subsequent
measurement the ancilla is found in |B〉, conditional dy-
namics are performed that invert the parity of the sys-
tem’s state; in our simulations, a σz operation is applied
to one of the spins. Another option could be to reinitial-
ize the spins to | ↑ . . . ↑〉. Denoting by P the correspond-
ing map, the complete sequence of pulses is T ′ = PT .
This protocol is efficient for arbitrary initial states and
has constant depth [47]. It is conceptually an extension
of methods for cooling the motion of ions based on mea-
surements [48–50] (see also Ref. [26] for an application to
QRE). Its realization requires that the coupling between
spins and ancilla is homogeneous to a good degree.

We now come to the specific features of an imple-
mentation based on Hamiltonian (3), for the example
of the target state of Eq. (2) with N = 2, 4 ions in a
linear Paul trap. We first identify the frequencies, i.e.
the detunings ∆j of the pulses, for all transitions which
couple the target state to any other state. For 2 ions,
these are ∆1 = −ωt + 2J1 and ∆2 = −∆1, which pump
| ↑↑〉|0〉 → |ψT 〉|1〉 and | ↓↓〉|0〉 → |ψT 〉|1〉, respectively;
afterwards the ancilla is damped, making the transfer
irreversible. The Rabi frequencies of the pulses are set
to spectrally resolve the individual resonances; residual
off-resonant coupling, which would depopulate the target
state, is minimized by choosing pulse durations for which
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FIG. 2: Residual infidelity for preparing N = 4 spins in the
target state of Eq. (2) for n̄ = 0 and in absence of deco-
herence. The sequence T ′ contains pulses at the detunings
∆1 = −ωt + 2(J1 + J2) (red arrows in Fig. 1(b)), ∆2 =
−ωt + 2J1 (blue), ∆3 = −ωt − 2(J1 − J2) (grey), ∆4 = −∆1

(green), and ∆5 = −∆2 (purple). The other parameters are
J1 = J3 = 0.05ωt, J2 =

√
2J1, gj = g = 5×10−3ωt, γtγ = 20.

The pulse durations are such that J1tj > 1 (J1tj ∼ 10), the
pulse areas are optimized to minimize the loss rate ΓT [51].

this coupling produces an integer number of Rabi oscil-
lations. For this choice, we pump N = 2 ions into the
target state with fidelity F > 1 − 10−6 under ideal con-
ditions, i.e., for n̄ = 0 and in absence of other sources of
noise. For N = 4 ions we identify a sequence of 5 pulses,
shown in Fig. 1(b) and detailed in the caption of Fig. 2,
which leads to an asymptotic fidelity F > 0.9995 un-
der ideal conditions. The infidelity as a function of time
is displayed in Fig. 2. The procedure is robust against
parameter fluctuations: the infidelity doubles when the
pulse areas change by about 30%. In comparison, prepar-
ing the 2-ion target state through unitary gates [46] with
equally fluctuating pulses decreases the fidelity down to
F ∼ 0.82.

We now analyse how the fidelity is affected by the abil-
ity to engineer the desired dissipation. We first consider
varying the temperature of the reservoir and thus n̄. Fig-
ure 3(a) displays the asymptotic fidelity for different val-
ues of n̄ and for N = 2, 4 ions, and shows that the control
on engineered dissipation becomes more stringent as the
number of spins is increased. Figure 3(b) shows the fi-
delity in presence of noise and decoherence, which we
consider here to be due to spin flips at rate γflip and
dephasing with γdeph. The corresponding Liouvillians

are γflip

∑
j

(
D[σj ] +D[σ†j ]

)
and γdeph

∑
j D[σzj ], and are

added to Lcoh(∆). The parity operation P counteracts
the decoherence and keeps the fidelity above 0.9 (0.98 for
2 ions) for values of γflip, γdeph for which in absence of
P we observe a drop to 0.5. The curves of Fig. 3 show
that also for QRE the effect of noise becomes more detri-
mental as N grows, which is expected as the protocol
becomes slower because of the spectral crowding around
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FIG. 3: Fidelity for preparing N = 2 (blue squares) and
N = 4 (red circles) spins in the target state as a function of
(a) n̄ (in absence of decoherence of the internal state) and (b)
the rate of incoherent processes 2γflip in units of g (for n̄ = 0
and assuming γflip = γdeph). The fidelity corresponds to the
asymptotic value of a sequence of pulses with the map T ′.
The fidelity is independent of the initial state, provided the
parity correction is included in the sequence. The parameters
are given in the caption of Fig. 2.

the target state. This could be counteracted by increas-
ing the energy splittings in the spectrum, here given by
ωt and Jj . It is important to note that the strength of the
coupling, determining the speed of each pulse, scales dif-
ferently with N depending on the physical system. For
instance, when the dissipative channel is the collective
motion of an ion chain, the coupling between spins and
motion decreases as N grows, due to the increasing in-
ertia of the crystal. If instead it is a cavity mode, the
coupling can increase with

√
N owing to superradiant

emission.
In conclusion, we have described a procedure for

preparing a spin chain in an entangled state. The pro-
cotol uses engineered dissipation, which makes it robust
against moderate fluctuations in the parameters, and in-
cludes a parity-error correction procedure, which makes
it robust against detrimental noise and decoherence. The
basic requirement is that the target state is spectrally re-
solved, which is achieved by constructing a suitable spin-
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spin interaction. Efficient preparation of N -spin entan-
gled states is warranted as long as the required spectral
resolution is larger than the typical rate of noise and de-
coherence. For arbitrary initial states, the protocol time
scale is expected to increase exponentially with N , as it
requires the capability to sweep over all state space. It
can be notably reduced if the initial state is, e.g., a po-
larized chain such as | ↑, ↑, . . . , ↑〉, which is typically easy
to produce with optical pumping. Its duration can be

further shortened by optimizing the time duration of the
coherent pulses, e.g., by using time-dependent values of
∆ and g in Eq. (5) identified by means of optimal-control
theory [52].
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[12] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli,
and P. Zoller, Phys. Rev. A 78, 042307 (2008).

[13] A. Kastler, J. Phys. 11, 255 (1950).
[14] L. Aolita, F. de Melo, and L. Davidovich, Rep. Prog.

Phys. 78, 042001 (2015)
[15] J. Cho, S. Bose, and M. S. Kim, Phys. Rev. Lett. 106,

020504 (2011).
[16] F. Ticozzi and L. Viola, Quantum Information and Com-

putation 14, 0265 (2014).
[17] D. A. Lidar, D. Bacon, and K. B. Whaley, Phys. Rev.

Lett. 82, 4556 (1999).
[18] S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, Phys.

Rev. Lett. 98, 240401 (2007).
[19] A. R. R. Carvalho, P. Milman, R. L. de Matos Filho, and

L. Davidovich, Phys. Rev. Lett. 86, 4988 (2001).
[20] M. B. Plenio and S. F. Huelga, Phys. Rev. Lett. 88,

197901 (2002).
[21] M. J. Kastoryano, F. Reiter, and A. S. Sørensen, Phys.

Rev. Lett. 106, 090502 (2011).
[22] D. D. Bhaktavatsala Rao and K. Mølmer, Phys. Rev.

Lett. 111, 033606 (2013) .
[23] A. W. Carr and M. Saffman, Phys. Rev. Lett. 111,

033607 (2013).
[24] C. Cormick, A. Bermudez, S. F Huelga, and M. B Plenio,

New J. Phys. 15, 073027 (2013),
[25] D. D. Bhaktavatsala Rao and K. Mølmer, Phys. Rev. A

90, 062319 (2014)

[26] C. D. B. Bentley, A. R. R. Carvalho, D. Kielpinski, and
J. J. Hope, Phys. Rev. Lett. 113, 040501 (2014).

[27] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz,
M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R.
Blatt, Nature 470, 486 (2011).

[28] Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler,
A. S. Sørensen, D. Leibfried, and D. J. Wineland, Nature
504, 415 (2013).

[29] D. Kienzler, H.-Y. Lo, B. Keitch, L. de Clercq, F. Le-
upold, F. Lindenfelser, M. Marinelli, V. Negnevitsky, and
J. P. Home, Science 347, 53 (2015).

[30] H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski,
J. M. Petersen, J. I. Cirac, and E. S. Polzik, Phys. Rev.
Lett. 107, 080503 (2011).

[31] S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A.
Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi,
and M. H. Devoret, Nature 504, 419 (2013).

[32] G. Morigi, P. W.H. Pinkse, M. Kowalewski, and R. de
Vivie-Riedle, Phys. Rev. Lett. 99, 073001 (2007).

[33] F. Reiter, D. Reeb, and A. S. Sørensen, preprint
arXiv:1501.06611 (2015).

[34] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[35] A. Beige, D. Braun, B. Tregenna, and P. L. Knight, Phys.

Rev. Lett. 85, 1762 (2000).
[36] A. Bermudez, T. Schaetz, and M. B. Plenio, Phys. Rev.

Lett. 110, 110502 (2013).
[37] D. J. Wineland and Wayne M. Itano, Phys. Rev. A 20,

1521 (1979).
[38] State |ψT 〉 is eigenstate of H0(∆) only for N even. For

N odd, these conditions can be reached by tailoring the
transition frequency of the individual spins, for example
by means of a spatial gradient of an external magnetic
field as in F. Mintert and C. Wunderlich, Phys. Rev. Lett.
87, 257904 (2001).

[39] N. Malossi, M. M. Valado, S. Scotto, P. Huillery, P. Pillet,
D. Ciampini, E. Arimondo, and O. Morsch, Phys. Rev.
Lett. 113, 023006 (2014).

[40] X.-L. Deng, D. Porras, and J. I. Cirac, Phys. Rev. A 72,
063407 (2005).

[41] A. Friedenauer, H. Schmitz, J. Glueckert, D. Porras and
T. Schaetz, Nature Physics 4, 757 (2008).

[42] R. Islam, E.E. Edwards, K. Kim, S. Korenblit, C. Noh, H.
Carmichael, G.-D. Lin, L.-M. Duan, C.-C. Joseph Wang,
J.K. Freericks, and C. Monroe, Nature Communications
2, 377 (2011).

[43] C. W. Gardiner and P. Zoller, Quantum Noise (Springer-
Verlag, Berlin, 2004).

[44] C. K. Law and J. H. Eberly, Field, Phys. Rev. Lett. 76,
1055 (1996).

[45] D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J.



6

Chiaverini, W.M. Itano, J.D. Jost, C. Langer, and D.J.
Wineland, Science 304, 1476 (2004).

[46] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835
(1999).

[47] D. Leibfried, unpublished.
[48] J. Eschner, B. Appasamy, and P. E. Toschek, Phys. Rev.

Lett. 74, 2435 (1995).

[49] B. Appasamy, Y. Stalgies, and P. Toschek, Phys. Rev.
Lett. 80, 2805 (1998).

[50] D. Leibfried, New J. Phys. 14, 023029 (2012).
[51] M. Weidinger, B. T. H. Varcoe, R. Heerlein, and H.

Walther, Phys. Rev. Lett. 82, 3795 (1999).
[52] D. M. Reich, C. P. Koch, New J. Phys. 15, 125028 (2013).


