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The search for Majorana bound states in solid-state physics has been limited to materials which
display a gap in their bulk spectrum. We show that such unpaired states appear in certain quasi-
one-dimensional Josephson junctions arrays with gapless bulk excitations. The bulk modes mediate
a coupling between Majorana bound states via the Ruderman-Kittel-Yosida-Kasuya mechanism.
As a consequence, the lowest energy doublet acquires a finite energy difference. For realistic set of
parameters this energy splitting remains much smaller than the energy of the bulk eigenstates even
for short chains of length L ∼ 10.
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Introduction. An intensive search for Majorana
fermions [1] is underway in solid-state devices [2]. The
vast majority of the proposals consist in zero energy
boundary modes in materials with a gaped bulk spec-
trum. Spin-less superconducting wire and topological in-
sulator in two or three dimensions fall in this category [3–
5].

We propose an alternative approach for the observa-
tion of Majorana fermions in Josephson Junctions Arrays
(JJA). We will show that certain quasi-one-dimensional
JJA can display Majorana modes algebraically located at
their boundaries. These Majorana fermions are emergent
particles nonlocal with respect to quasi-particles, they
emerge as a result of strong interactions taking place at
the junctions of three JJ chains. They do not mix with
higher energy excitations although bulk spectrum is not
gapped. The existence of low-energy Majorana fermion
could then be proved by spectroscopy [6, 7].

In this letter, we first explain the JJA system and how
to model it with an Ising-like Hamiltonian. Then, a qual-
itative argument is employed to obtain the low-energy
effective theory using unpaired Majorana modes. Nu-
merical results will confirm the validity of this effective
theory and show that Majorana modes are indeed pro-
tected. Finally, we discuss problems that may arise in
the experimental realization of our proposal.

Experimental set-up We consider three identical lad-
ders of Josephson junctions coupled together as in Fig.
(1a) [8]. Each ladder has a unit cell with ”large”
and ”small” junctions, Fig. (1b). Their corresponding
Josephson energies are EJL and EJS , where EJL > EJS .
The three ladders are closed at the ends by a junction
with Josephson energy EJE . We assume that charging
energies are much smaller than Josephson ones for all the
junctions. All the closed circuit in the ladders are at full
frustration, that is, they are threaded by a magnetic flux
equal to half of the flux quantum. The two larger loops
are threaded by magnetic fluxes ϕ1 and ϕ2, respectively.

FIG. 1. (a) Three ladders of Josephson junctions coupled to-
gether. The two large loops are threaded by magnetic fluxes
ϕ1 and ϕ2. (b) Unit cell of one ladder. Josephson energy
of ”large” junction (red) is larger than the one of a ”small”
junction (green), EJL > EJS. All the cells are threaded by a
magnetic flux equal to half of the flux quantum. (c) Loop at
the boundaries. The Josephson coupling for the blue junction
at the chains end is denoted as EJE. (d) At low temperature
and near a phase transition, the three Josephson ladders sys-
tem maps to three Ising chains with transverse field (solid
lines) and coupling between their ends (dotted lines). Majo-
rana zero modes are algebraically located at the chains ends
(dark regions).

For ladder p, the phase difference in the left vertical and
horizontal red junctions in the loop k are denoted by
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φp(2k) and φp(2k + 1), respectively (see Fig. 1b).
At full frustration, the properties of one infinite chain

are invariant under translation by one small closed loop
and reflection through horizontal axes. We analyze the
energy of one unit cell as a function of the phase differ-
ence in the ”large” junctions:

Up,k = −EJL

{

cos [φp(2k)] + cos [φp(2k + 1)]
}

+EJS cos [φp(2k) + φp(2k + 1) + φp(2k + 2)] , (1)

where Up,k is the energy of the loop k of ladder p. The
total energy has a global Z2 symmetry given by φp(i) =
−φp(i) in each junction i. In the regime EJL ≫ EJS ,
the ground-state corresponds to all phases equal to zero
φp(i) = 0 and the symmetry is preserved. However, a
broken symmetry phase occurs for EJL ≪ EJS , as in this
regime the ground-state acquires a φp(i) 6= 0. The crit-
ical point is located near EJL/EJS ∼ 5 [8]. The model
(1) assumes low transparency junctions that are well de-
scribed by cos (φ) energy, the presence of small higher
harmonics does not change the results.
The specific details of the system are irrelevant near

the phase transition and the properties of one ladder are
described by an Ising chain with transverse field. The
mapping can be written explicitly by taking each ”large

junction” as a 1/2-spin with component
√

1− φ2p(i) in

the direction of the field. Near the phase transition,
only the lowest non-zero order in the phase differences
in ”large” junctions are relevant. Then, the first term in
Eq. (1) represents the field contribution and the second
the Ising coupling between nearby spins (see supplemen-
tal material of Ref. [8] for details).
The junctions located at the ends of the chains, blue

crosses in Fig. (1d), couple the three ladders:

Uc = EJE

{

cos [φ1(1) + φ2(1) + φ3(1)]

+ cos [φ1(L) + φ2(L) + φ3(L)]
}

, (2)

where L is the double of the number of squares in each
ladder. This contribution gives an extra coupling be-
tween spins at the boundaries in the Ising model.
Effective model. Near the phase transition, the

Hamiltonian of the three ladders of JJA maps to three
Ising chains with transverse magnetic field and coupling
between their ends H =

∑

pHp +Hc, where:

Hp =− J

L−1
∑

k=1

σx
p (k)σ

x
p (k + 1)− h

L
∑

k=1

σz
p(k), (3)

Hc =− Jc

3
∑

p=1

σx
p (1)σ

x
p+1(1) + σx

p (L)σ
x
p+1(L). (4)

We take index p module 3. The length of each chain is
L and thus, the total number of sites of the three chains

is N = 3L. The Pauli matrices σz
a(i), σ

x
a(i), σ

z
a(i) act on

spin at site i of chain p. The parameters J and h con-
trol the usual Ising interaction and magnetic field in the
transverse axis, respectively. They can be related to the
Josephson energies as J/h ∼ EJL/EJS . The value of Jc
sets the strength of the coupling between different chains
and fullfills Jc/J ∼ EJE/EJL. We are interested in the
regime h/J ∼ 1 and Jc/J ∼ 1. A schematic representa-
tion of the Hamiltonian appears in Fig. (1d).
There may be other small terms in our Hamiltonian for

realistic experiments. We will comment later on different
sources of incoherent behaviour and how they can affect
the low-energy physics of Eqs. (1,2).
We express the low-energy degrees of freedom for

Hamiltonian Eq. (3,4) in terms of Majorana fermions.
We remark that Majorana fermions appearing in the low-
energy effective theory of the JJA are nonlocal with re-
spect to the Bogolyubov quasiparticles of the supercon-
ductors. This is an important difference between our
case and the well-known case of 1D spinless supercon-
ductors. We use a multichannel version of the Jordan-
Wigner transformation [9]. This mapping requires to en-
large the Hilbert space with an extra 1/2-spin. Operators
acting on this spin are denoted by σx(0), σy(0) and σz(0).
The original spin operators are mapped to fermions via:

c†p(k) = ηp(−1)
∑

j<k
np(j)σ+

p (k) , (5)

where np(j) =
[

σz
j (p) + 1

]

/2. The ηp acts on the added
1/2 spin. They are:

η1 = σx(0)(−1)N2+N3 ,

η2 = σy(0) (−1)N1+N3 ,

η3 = σz(0) (−1)N1+N2 ,

where Np is the total number of fermions in chain p. The
operators defined in Eq (5) fulfill the fermionic algebra.
Finally, Majorana fermions are defined as ψp(2k − 1) =
cp(k) + c†p(k) and ψp(2k) = i

[

cp(k)− c†p(k)
]

.
We focus on the regime in which each of the Ising

chains are critical, J = h. Critical behavior for one single
JJ chain has been experimentally proven in Ref. [8]. In
this case, our model can be written as:

iH = J

2L
∑

j=1

~ψ(j)~ψ(j + 1)+ (6)

Jc
∑

abc

ǫabcηbηc
[

ψb(1)ψc(1) + ψb(2L)ψc(2L)(−1)Nb+Nc
]

,

where ~ψ(j) = (ψ1(j), ψ2(j), ψ3(j)). The coupling at

the left boundary is ~S · (~ψ(1) × ~ψ(1)), where Sa =
(i/2)ǫabcηbηc. If only this coupling is considered,
the Hamiltonian describes an over-screened two-channel
Kondo (2CK) model [10–13]. The role of the impurity

is played by the 1/2-spin ~S and the relevant degrees of
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freedom of the conduction electrons are described by the
bulk spins of the three Ising chains. At temperatures be-
low the Kondo temperature TK ∼ J exp(−constJ/Jc) the
two-channel Kondo model displays the universal quan-
tum critical behavior. At the Quantum Critical point
(QCP), the 2CK model possesses a finite ground state
entropy ln

√
2 which originates from the presence of a

zero energy Majorana mode. This mode presents what is
left from the impurity spin S=1/2. The leading irrelevant
operator at the QCP describes a coupling of this mode
to the product of three bulk Majorana at the impurity
point.
It stands to reason that at L→ ∞ model (6) describes

two independent 2CK models. Formally such decoupling
is achieved by declaring (−1)Naηa as an independent Ma-
jorana fermion. Then its anti-commutator with ηa is zero
on average. At finite L, Hamiltonian (6) possesses an ad-
ditional energy scale generated by a tunneling between
the Majorana modes located at different ends of the sys-
tem. Below this scale one has to see deviations from the
2CK physics. These arguments assume that L > J/TK ,
so that there is separation between energy scales asso-
ciated with the Kondo physics and the ones associated
with the Majorana fermions, the condition that is easy
to achieve in practice.
Although model (6) is not integrable, we can ana-

lyze qualitatively the low-energy theory starting from
the strong coupling limit J/Jc = 0. There are
Majorana fermions at each end of the chains, (9)
µL = iψ1(1)ψ2(1)ψ3(1) and µR = iψ1(2L)ψ2(2L)ψ3(2L),
which commute with the strong coupling Hamiltonian.
That implies a two-fold degeneracy of the whole spec-
trum. Indeed, the occupancy of the fermionic state
f = [µL − iµR] does not affect the energy. We notice
that the fermion f is constructed from Majorana at dif-
ferent ends of the chain.
If one adopts the hypothesis of independence of two

2CK QCPs at L→ ∞ and consider the finite size effects
as a perturbation their contribution to the low-energy dy-
namics can be extracted from the effective Hamiltonian
computed as [11]:

Hr ∼ T
−1/2
K [µLψ1(2)ψ2(2)ψ3(2)+

µRψ1(2L− 1)ψ2(2L− 1)ψ3(2L− 1)]. (7)

We expect that Majorana at each end couple via RKKY
mechanism through the low-energy excitations [14–17].
Indeed, integrating over the fermions in (7) we obtain the
effective Hamiltonian for the Majorana modes: Heff =
itµLµR where T ∼ T−1

K

∫

G(L, t)3dt ∼ T−1
K (vF /L)

2. The
Green function of the bulk Majorana is

G(x, t) =eikFx vFπ

2L sin
[

π(x + itvF )/2L
]

+e−ikFx vFπ

2L sin
[

π(x− itvF )/2L
] , (8)
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FIG. 2. Difference between the energy of the first excited
and ground states, E1 − E0, of the three Ising chains Eqs.
(3,4) as a function of the inverse of the chains length 1/L.
Each chain is at the critical point h = J . The strength of the
coupling between chains is Jc = J . The size of the system
goes from N = 6 to N = 21, where N = 3L. The line fits
the data to axp + b, where a, b and p are free parameters.
The result gives p = 2.05 ± 0.05, b = (1.0 ± 0.5) × 10−4 and
a = (158.7± 0.6)× 10−3. Inset: the black points are E1 −E0

as a function of 1/L, as in the main panel. The red squares
correspond to the difference between energy of the second
excited and ground states, E2 − E0.

where kF = π/2 is the Fermi wave vector and vF is the
Fermi velocity [11]. In this simpler case, the degeneracy
of the spectrum is lifted by a factor T ∼ L−2. The effec-
tive Hamiltonian can be written asHeff = T (f †f−1/2).

If this result holds for the full model Eq. (3,4), the ex-
istence of Majorana fermions in the JJA discussed above
would be signaled by a mode with energy going as L−2.
The bulk eigenstates correspond to that of the Ising chain
with transverse field at the critical point [18], whose en-
ergy levels scale as ǫ & 1/L. Then, for sufficiently long
chains the unpaired Majorana are protected. We are go-
ing to check that this is actually the case for the full
model Eqs. (3,4) with parameters J = h = Jc. In fact, it
turns out that for the parameters chosen the low-energy
doublet is still protected even in the case of short chains.

We employ numerical methods to show that our previ-
ous results are valid for the full model Eqs. (3,4). Partial
diagonalizations [19] of the three Ising coupled chains are
carried out for sizes ranging from N = 6 to N = 24. In
Fig. 2, the difference in energy between the first excited
and ground-state, E1−E0, appears as a function of 1/L.
The data have been fitted to a function a ∗ xp + b, where
a, b, p are free parameters. The result is the solid black
line with p = 2.05 ± 0.05 and b = (1.0 ± 0.5) × 10−4.
These values are in excellent agreement with our previous
analysis based on RKKY interactions between Majorana
particles.
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FIG. 3. Energy difference between first and ground states,
E1 − E0, as a function of the inverse of the chains length
1/L. A random magnetic field in the x-axis, following a uni-
form distribution in the interval [−W/2,W/2], is added to the
original Hamiltonian with h = J = Jc. Each symbol corre-
sponds to a different W , as indicated in the legend. Lines fit
each disorder to a function axp + b, where a, b and p are free
parameters. The value of b goes from b = 0.014 to b = 0.0004
and the exponent from p = 2.6 to p = 2.07.

Experimental realization. In order to observe low en-
ergy (Majorana) doublet one can employ a set-up sim-
ilar to the one used in [6]. In this set-up one registers
the phase shift of a LC resonator weakly coupled to the
three chains device at the frequency close to LC reso-
nance. This phase shift depends on the state of the de-
vice. If the device is subjected to the scanning second
tone, the device spectrum corresponds to the peaks in
the phase shift. Furthermore, pulse excitations and shift
measurements can be used to read out the state of the
qubit.

Outside of the critical regime the energy of the low-
energy state is large (1 − 5GHz for the chains studied
in [8]) so that it can be prepared and read out directly.
Because the energy of the doublet in the protected state
is very low, in order to prepare and read out the modes
in this state one needs to bring the system in and out
the critical regime (similar to the protected systems [20])
which can be achieved by small variation of the exter-
nal field. Crucially, the lifetime of the unprotected state
is expected to be long enough to allow for the readout
mesurements.

Low-energy doublet has to have much smaller energy
than the one of higher excited states. We see in Fig.
2 that E2 − E0 is more than two orders of magnitude
larger than E1 − E0 for L ∼ 10. On the other hand
the superinductors realizing the Ising chains should be
sufficiently short to prevent the appearance of low energy
plasmon-like modes. This does not happen for L < 20.
Thus, L ∼ 10− 20 is a reasonable size for experiments.

We now discuss a role of disorder present in experimen-
tal realizations. The disorder in the inter-chain couplings
affects the Kondo temperature but does not change the
critical behavior. We have checked this numerically by
studying the model with the uniformly distributed cou-
pling in the interval (Jc−0.1J, Jc+0.1J) and found that
this disorder has practically no effect on the properties
of the low-energy doublet.

The disorder in the chain junctions and loop fluxes is
potentially more dangerous. Majorana fermion emerges
as a result of renormalization process in the effective
Kondo model, so it is vital to preserve the criticality of
the chains assured by the condition J = h. The critical
behavior is smeared if the Ising model is subject to the
field, hx in x-direction, so the presence of the random
field in x-direction in the effective Ising model describing
physical systems might be detrimental to the low-energy
doublet. Such fields are indeed generated due to two
reasons: random deviation of the loop areas and devi-
ation of the small contacts from its average values but
the latter effect disappears at Φ = Φ0/2. Estimating
the realistic parameters we get hx ∼ 10−3 − 10−2J . The
implementation sketched in Fig. 1 has one more poten-
tial problem: the fluxes threading the loops formed by
JJ chains are large and difficult to control precisely. This
flux biases the whole chain by phases ϕ1,2 spread over the
whole chain length that change the effective value of the
Josephson energies. The effect of this bias also translates
into a small field hx ∼ 10−4J in the Ising model.
To estimate the effect of the disorder we have studied

the effect of the random fields in x-direction on the en-
ergy difference of the first two levels ∆E1. Fig. 3 shows
the energy difference of the first two levels ∆E1(1/L) for
the three Ising chains, Eq. (3,4), plus a small perturba-
tion ∆Hx =

∑

j ǫp(j)σ
x
p (j), where ǫp(j) are randomly

distributed in the interval [−W/2,W/2]. The solid lines
fit each set of data to a function a ∗ xp + b, with free pa-
rameters a, b, c. For the largest disorder W = 2 ∗ 10−2J ,
the fitting function provides p = 2.6 and it does not go
trough the origin b = 0.014. This is expected as the typ-
ical energy of the perturbation, W , is roughly the same
as the one of the first level ∆E for the largest size. The
points for the smaller disorder display behavior similar
to the one in the clean system. Furthermore, the low-
energy mode remains in all cases well separated from the
bulk spectrum in the presence of small disorder.

The numerical results can be understood qualitatively:
random bulk magnetic field guarantees that the condition
for criticality J = h is observed on average, thus such
disorder potential in the Majorana chain does not create
a spectral gap [21]. Furthermore, the Kondo effect is
sensitive only to the local density of states at the impurity
site, which is not strongly affected.

Summary. We have shown that the low-energy Majo-
rana modes appear in a system composed by three lad-
ders of Josephson junctions as predicted in [10]. Their
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signature is a low-energy mode with energy going as
∼ 1/L2, while the bulk spectrum eigenstates have en-
ergies ǫ ∼ 1/L. We have further checked that the energy
difference of the lowest doublet is more than two order
of magnitude smaller than energy of bulk eigenstates for
chains of length L ∼ 10. So, boundary modes survive for
system sizes which are accessible to experiments. Finally,
we have analyzed the sources of incoherence and noise in
the proposed experimental set-up. We conclude that our
JJA can be a good experimental system to observe for
the Majorana particle weakly (algebraically) localized at
the boundary.
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