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We propose a continuum representation of the Dynamical Mean Field Theory, in which we were
able to derive an exact overlap between the Dynamical Mean Field Theory and band structure
methods, such as the Density Functional Theory. The implementation of this exact double-counting
shows improved agreement between theory and experiment in several correlated solids, such as the
transition metal oxides and lanthanides. Previously introduced nominal double-counting is in much
better agreement with the exact double-counting than most widely used fully localized limit formula.

PACS numbers: 71.27.+a,71.30.+h

Understanding the electronic structure of materials
with strong electronic correlations remains one of the
great challenges of modern condensed matter physics.
The first step towards calculating the electronic struc-
ture of solids has been achieved by obtaining the single-
particle band dispersion E(k) within the density func-
tional theory (DFT) in the local density approximation
(LDA) [1], which takes into account correlation effects
only in a limited extent.

To account for the many-body correlation effects be-
yond LDA, more sophisticated methods have been devel-
oped. Among them, one of the most successful schemes is
the dynamical mean-field theory (DMFT) [2]. It replaces
the problem of describing correlation effects in a periodic
lattice by a strongly interacting impurity, coupled to a
self-consistent bath [3]. This method was first developed
to solve the Hubbard model, but it was soon realized [4]
that it can also be combined with the LDA method, to
give more material specific predictions of correlation ef-
fects in solids. The LDA+DMFT method achieved great
success in the past two decades, as it was successfully
applied to numerous correlated solids [5]. The combina-
tion of the two methods, nevertheless lead to a problem
of somewhat ambiguous way of subtracting the part of
correlations, which are accounted for by both methods.

The so-called double-counting (DC) term was usu-
ally approximated by the formula first developed in the
context of LDA+U, and was evaluated by taking the
atomic limit for the Hubbard interaction term [6, 7].
Many other similar schemes were proposed recently [8–
12], but rigorous derivation of this double-counted in-
teraction in solids within DMFT and LDA is missing
to date. Here we propose a new method of calculating
the overlap between DMFT and a band-structure method
in solids, and we explicitly evaluate this DC functional
within LDA+DMFT. Some ideas presented here come
from studying the toy model of correlations, namely the
H2 molecule, in which the exact double-counting was
found for the DMFT method applied to the single H
atom of H2 molecule [13], where the screening is absent.
The derivation of the double-counting in the presence of

screening in solids will be addressed in this letter, and
will be tested on several well studied correlated materi-
als, such as transition metal oxides SrVO3, LaVO3, and
most studied lanthanide metal, the elemental Cerium.

To compare different approximations in the same lan-
guage, it is useful to cast them into the form of the
Luttinger Ward functional [5, 15, 16], which is a func-
tional of the electron Green’s function G, and takes the
form Γ[G] = −Tr((G−10 −G−1)G)+Tr log(−G)+ΦVc [G].
The first part is the material dependent part, in which
G−10 (rr′;ω) = [ω + µ + ∇2 − Vext(r)]δ(r − r′), and
the second two terms are universal functionals of the
Green’s function G(rτ, r′τ ′) and the Coulomb interac-
tion Vc(r − r′). In the exact theory, ΦVc [G] contains all
skeleton Feynman diagram, constructed by G and Vc [16].
In the language of the Luttinger Ward functional, differ-
ent approximations can then be looked at as different
approximations to the interacting part ΦVc [G].

The Density Functional Theory equations can be ob-
tained by approximating the exact functional ΦVc [G] by
EH [ρ(r)] +Exc[ρ(r)], where EH and Exc are the Hartree
and the exchange-correlation functionals, respectively.
The stationarity condition gives the DFT equations, i.e.,
G−1 − G−10 = (VH [ρ] + Vxc[ρ])δ(r − r′)δ(τ − τ ′), be-
cause δExc[ρ]/δG = δ(r − r′)δ(τ − τ ′) δExc[ρ]/δρ =
δ(r − r′)δ(τ − τ ′) Vxc[ρ]. Note that in this language,
the exact DFT appears as an approximation, which
gives an approximate Green’s function, and in which
the exact self-energy is approximated by a static and
local potential. The total energy is exact, but one
would not learn this from the Luttinger-Ward formal-
ism. Note also that the static approximation is a con-
sequence of truncating the variable of interest, namely
replacing full G(r, τ, r′, τ ′) by its diagonal components
ρ(r) = δ(r− r′)δ(τ − τ ′)G(rτ, r′τ ′).

In the Luttinger-Ward functional language, the DMFT
appears as an approximation where the Green’s function
in the Φ functional is replaced by its local counterpart
G → Glocal , and the Coulomb repulsion Vc by screened
interaction Vc → U , namely ΦDMFT = ΦU [Glocal]. [5, 29]
Note that the DMFT functional has exactly the same
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form as the exact functional ΦV c[G], because all the
skeleton Feynman diagrams constructed by Glocal and U
are summed up by DMFT [17], while in DFT the func-
tional Exc[ρ] is unknown, and further approximation is
necessary. The truncation of the variable of interest from
G to Glocal leads in DMFT to the self-energy, which is
also local in space, but it keeps its dynamic nature. Other
approximations such as Hartree-Fock or GW [18] can be
similarly derived by replacing ΦV c[G] by some limited set
of Feynman diagrams, i.e., truncation in space of Feyn-
man diagrams, rather than truncation of the variable of
interest.

There is some kind of disconnect between the DMFT
functional ΦDMFT

U [Glocal], and the LDA functional
Exc[ρ(r)], mostly because the auxiliary systems for the
two methods are very different. The auxiliary system for
LDA approximation is the uniform electron gas problem
defined for continuum, in the absence of complexity of
the solid. On the other hand, DMFT is usually associ-
ated with the lattice model like Hubbard model, where
mapping to the local problem reduces to the Anderson
impurity model, which does not have a unique continuum
representation. The double-counting problem occurs be-
cause it is not clear what is the overlap between the two
methods, i.e., what physical processes are accounted for
in one and what in the other method.

It is useful to represent the DMFT method in the
continuum r representation with the real space Pro-
jection/Embedding technique [9]. First we define the
DMFT projector P̂ such that it maps the Green’s func-
tion, defined in the real space G(r, r′), to the local
Green’s function also defined in the real space, i.e.,
Glocal(r, r

′) = P̂G(r, r′). Next we also write the screened
Coulomb repulsion in the continuum space and we de-
note it by VDMFT (r, r′). The DMFT is then the method
which sums all skeleton Feynman diagrams constructed
by Glocal(r, r

′) and VDMFT (r, r′), and hence the DMFT
functional has exactly the same form as the exact func-
tional, except that the variables Vc and G are replace
by VDMFT and Glocal, respectively, i.e., ΦVc [G(r, r′)] →
ΦVDMFT [Glocal(r, r

′)]. [19] Note that this truncation of
the Green’s function G(r, r′) to its local counterpart par-
allels the truncation of the Green’s function to its di-
agonal component in theories that choose density as the
essential variable, i.e., ρ(r) = G(rτ, r′τ ′)δ(r−r′)δ(τ−τ ′).

More specifically, for the projector P̂ we will
use a set of quasi atomic orbitals, such that
Glocal(r, r

′) =
∑
L,L′ 〈r|φL〉 〈φL|G |φL′〉 〈φL′ |r′〉 where

〈r|φL〉 = ul(r)YL(r) are spheric harmonics times local-
ized radial wave function. Note that locally the basis
could be completed, in which case the DMFT becomes
projector independent method, which depends only on
the range of the projector. For the screened Coulomb
repulsion, we will use Yukawa short-range interaction of

the form VDMFT (r, r′) = e−λ|r−r′|

|r−r′| , but the precise form

is arbitrary at this point.
After mapping the DMFT method to the continuous

(r, r′) Hilbert space, where DFT exchange-correlation
is defined, it is easy to see what is the overlap be-
tween the two methods. The Hartree term is ac-
counted for exactly in the LDA method, and has
the form EHVc [ρ] = 1

2

∫
drdr′ρ(r)ρ(r′)Vc(r − r′), while

in DMFT it takes the following form EH,DMFT =
1
2

∫
drdr′(P̂ ρ(r))(P̂ ρ(r′))VDMFT (r − r′), which can also

be written as EH,DMFT = EHVDMFT [P̂ ρ], where P̂ ρ =

δ(r− r′)δ(τ − τ ′)Glocal(rτ, r′τ ′), and EHVc [ρ] is the exact
Hartree functional defined above. The Hartree contribu-
tion to the DC within LDA+DMFT (or any other band
structure method which includes the exact Hartree term)
is thus EHVDMFT [P̂ ρ]. This DC term thus corresponds
to truncating the Green’s function G and the Coulomb
interaction Vc by their local/screened counterparts, i.e.,
G→ P̂G and Vc → VDMFT in the functional.

For approximations, which truncate in the space
of Feynman diagrams (such as Hartree-Fock or GW
method), one can obtain the DMFT double-counting by
applying both the truncation in space of Feynman dia-
grams as well as the DMFT truncation in variables of
interest. [20] For the case of GW method, one can check
diagram by diagram that the corresponding DMFT Feyn-
man diagram is obtained by replacing G by P̂G and Vc by
VDMFT in each diagram, just like it was done above for
the Hartree term. More precisely, the GW functional can
be written as ΦGWVc [G] = EHVc−

1
2Tr log(1−VcGG), where

GG = P is the convolution of two Green’s functions (po-
larization function). The GW+DMFT double-counting
is thus EH,DMFT − 1

2Tr log(1 − VDMFT (P̂G) (P̂G)),

which can be shortly written as ΦGWVDMFT [P̂G].
In the case of DFT+DMFT, the expansion in terms

of Feynman diagrams does not exist, however, to iden-
tify the overlap between the two methods, this is not
essential. Clearly, the double-counting in DFT+DMFT
is obtained by the same procedure of replacing G by P̂G
and Vc by VDMFT in the DFT functional. This can be de-
rived in two ways: i) first applying the DFT approxima-
tion to the exact functional (Φ→ EHVc + EXCV c ), followed
by the DMFT approximation on the resulting functional
(G → P̂G, Vc → VDMFT ), or, ii) first applying the
DMFT approximation (Φ → ΦVDMFT [P̂G]), followed by
the DFT approximation on the resulting functional. In
both cases, we arrive at

ΦDFT+DMFT
DC = EHVDMFT [P̂ ρ] + EXCVDMFT [P̂ ρ],

where ΦDC is a functional of ρlocal = δ(τ−τ ′)δ(r−r′)P̂G
only, because DFT truncates the Green’s function to its
diagonal components. The explicit derivation for the ex-
change, and representative correlation term, is given in
the supplementary information.

In LDA method, the exchange-correlation functional is
obtained from the energy of the uniform electron gas. To
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obtain the LDA+DMFT double-counting, one thus needs
to solve the problem of the electron gas with the density
that contains only ”local” charge P̂ ρ, but where electrons
interact with the screened VDMFT interaction. [29]

Including the exact double-counting, the LDA+DMFT
Φ functional is thus

ΦLDA+DMFT [G] = EHVc [ρ] + EXCVc [ρ] + ΦVDMFT [P̂G]−
−EHVDMFT [P̂ ρ]− EXCVDMFT [P̂ ρ],(1)

where ΦVDMFT [P̂G] is the DMFT functional which con-
tains all Feynman diagrams constructed from P̂G and
VDMFT . This is the central equation of this paper,
as it defines the LDA+DMFT approximation includ-
ing the exact DC. The saddle point equations give the
LDA+DMFT set of equations in the real space:

G−1 −G−10 = P̂
δΦVDMFT [Glocal]

δGlocal
+ (2)(

δEHXCVc
[ρ]

δρ
− P̂

δEHXCVDMFT
[ρlocal]

δρlocal

)
δ(r− r′)δ(τ − τ ′)

where we used EHXC [ρ] ≡ EH [ρ] + EXC [ρ] and P̂G ≡
Glocal [29].

The only difference between functional Eq. 1, and the
usual LDA+DMFT implementation, is the presence of
EXCVDMFT . This is the semi-local exchange and LDA cor-
relation functional of the electron gas interacting by the
screened interaction, which we will in the following ap-
proximate by the Yukawa form, i.e., VDMFT (r, r′) =
e−λ|r−r′|

|r−r′| . We will take here a constant λ, although gen-

eralization with space dependent λ(r − r′) is in princi-
ple possible. The semi-local exchange-density εxVDMFT [ρ]
(defined by Ex[ρ] =

∫
drρ(r)εx[ρ(r)]), can be computed

analytically, and takes the following form

εxVDMFT [ρ] = −C
rs
f(x)

where

f(x) = 1− 1

6x2
− 4 arctan(2x)

3x
+

(12x2 + 1) log(1 + 4x2)

24x4
,

C = 3
2

(
9

4π2

)1/3
, rs =

(
3

4πρ

)1/3
, and x =

(
9π
4

)1/3 1
λrs

.

The exchange potential V x = δ
δρE

x[ρ] is then V xVDMFT =
4
3ε
x
VDMFT

+ 1
3
C
rs
x dfdx .

The correlation part requires solution of the homoge-
neous electron gas problem interacting with Yukawa re-
pulsion, which was solved by QMC [21–23]. Here we
want to have an analytic expression for correlation en-
ergy at arbitrary λ and rs. It is well established that
G0W0 gives quite accurate correlation energy of the
electron gas [24, 25], especially when computed from
the Luttinger-Ward functional Γ[G]. We thus repeated

Ce-α nf Vdc/U

exact 0.997 0.424

nominal 1.002 0.500

FLL 1.035 0.533

TABLE I: LDA+DMFT valence and DC potential for α-Ce
at T = 200 K. The local Coulomb repulsion in Ce is U = 6 eV.

G0W0 calculation for the electron gas, but here we use
Yukawa interaction. We evaluate the total energy using
the Luttinger-Ward functional of GW to achieve high ac-
curacy. We then fit the correlation energy in the range
of physically most relevant rs ∈ [0, 10] and screenings
λ ∈ [0, 3] (λ is measured in Bohr radius inverse) with the
following functional form:

εcV λc =
εcλ=0

1 +
∑4
n=1 anr

n
s

(3)

The numeric values of an coefficients, obtained by the fit,
are given in supplementary information.

Finally, the correlation potential is V cDMFT =
V cλ=0

A(rs,λ)
+

εcλ=0

C(rs,λ)
, where A(rs, λ) = 1 +

∑4
n=1 anr

n
s and C(rs, λ) =

3[1 +
∑4
n=1 anr

n
s ]2/

∑4
n=1 n an r

n
s . Note that V c should

not be confused with Vc. The former is the correlation
potential, and the latter is the Coulomb interaction. We
take the unscreened correlation energy density εcλ=0 (and
unscreened potential) from the standard parametrization
of the quantum Monte Carlo results, hence the G0W0 cal-
culation is only used for renormalization of correlations
by screening with Yukawa form.

In the following we present results for some of the
most often studied correlated solids, namely, elemental
Cerium, SrVO3 and LaVO3. We will use the symbol
U for the value of the DMFT screened monopole interac-
tion, as is customary in the literature. Note however, that
the value of U gives a unique value of screening parame-
ter λ needed in the exact DC [29]. Moreover, in Yukawa
parametrization of interaction, U then also uniquely de-
termines the other Slater integrals, such as the Hund’s
coupling [29].

We will use three different forms of DC functional: i)
”exact”, which we introduced above, ii) ”FLL” stands for
fully localized limit form introduced in Ref. 6, which has
the simple form Vdc = U(n − 1/2) − J/2(n − 1), and n
stands for the correlated occupancy, c) and the ”nominal”
DC, introduced in Ref. 9, 10 and in Ref. 14 in the context
of Hubbard-I approximation. The ”nominal” Vdc takes
the same form as ”FLL” formula, but n in the formula
is replaced by the nominal occupancy (n0), i.e., corre-
sponding to the nominal valence. We use LDA+DMFT
implementation of Ref. 9.

The physical properties of correlated materials are
very sensitive to the value of the local occupancy nf ,
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SrVO3 nt2g+eg nt2g neg V t2g
dc /U V eg

dc /U

exact 2.223 1.507 0.716 1.384 1.406

nominal 2.251 1.541 0.710 1.443 1.444

FLL 2.529 1.699 0.830 1.943 1.943

TABLE II: LDA+DMFT results for SrVO3 at T = 200 K and
U = 10 eV. Both t2g and eg orbitals are treated by DMFT.
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FIG. 1: (Color online) LDA+DMFT total density of states
for SrVO3 using three different DC potentials. Experimental
photoemission is reproduced from Ref. 27. (parameters listed
in table II).

and nf is sensitive to the value of DC. In table I we
show results for elemental Cerium in the α phase. All
three DC functionals give very similar correlated occu-
pancies nf , and all are very close to nominal valence
n0 = 1. The actual value of the DC potential Vdc differs
for less than 0.1U , which leads to almost indistinguish-
able spectra on the real axis, and from the previously
published results [9], hence we do not reproduce them
here. We found a general trend in all materials stud-
ied that the exact DC is somewhat smaller then given
by FLL formula. For Ce, the Hartree contribution to
DC potential is VH = nfU ≈ 0.997U , the semi-local
exchange contribution is Vx ≈ −0.485U and LDA corre-
lation is Vc ≈ −0.088U , hence the total DC potential is
VH+Vx+Vc ≈ 0.424U , which is slightly smaller than FLL
formula U(nf − 1/2)− J/2(nf − 1) ≈ 0.533U or nominal
formula U(n0f −1/2)−J/2(n0f −1) = 0.5U . It is interest-
ing to note that the semi-local exchange used in LDA is
quite different from the exact exchange value. The latter
is only |VF | = Un/14 ≈ 0.071U , a substantially smaller
value then the semi-local exchange |Vx| ≈ 0.485U . This
shows why DC within LDA+DMFT is so different from
the Hartree-Fock value of the DMFT self-energy, i.e.,
Σ(ω =∞).

Next we present tests for SrVO3, which is a metallic
transition metal oxide with nominally single electron in
the t2g shell. Near the Fermi level EF , there are mostly
t2g states. The majority of eg states are above EF , how-
ever, due to strong hybridization with oxygen some part
of eg orbitals also gets filled. There are two ways the
DMFT method can be used here. In the first case, one
can treat only the t2g shell within DMFT. The vast ma-
jority of DMFT calculations for SrVO3 were done in this

LaVO3(t2g-only) nt2g V a1g
dc /U V eg′

dc /U

exact 2.014 1.195 1.193

nominal 2.074 1.450 1.450

FLL 2.099 1.544 1.544

TABLE III: LDA+DMFT results for LaVO3 at T = 200 K
and U = 10 eV. Only t2g orbitals are treated by DMFT.

LaVO3(t2g+eg) nt2g+eg nt2g neg V a1g
dc /U V eg′

dc /U V eg
dc

exact 2.444 2.048 0.397 1.596 1.599 1.665

nominal 2.344 2.032 0.312 1.458 1.458 1.458

FLL 2.706 2.167 0.540 2.114 2.114 2.114

TABLE IV: LDA+DMFT results for LaVO3 at T = 200 K
and U = 10 eV. Both t2g and eg orbitals are treated by
DMFT.

way. In this case, all three DC potentials again give very
similar results and the spectra is almost indistinguishable
from previously published results in Ref. 10. One can also
treat dynamically with DMFT the entire d shell. This
case is presented in Table II and spectra in Fig. 1. One
can notice that the exact and the nominal DC give very
similar nd, while the FLL formula gives 14% larger nd.
This is because the value of the DC potential is substan-
tially larger (≈ 40 %) when using FLL as compared to ex-
act case. It is nevertheless comforting to see that 40% er-
ror in double-counting still does not leads to major failure
of LDA+DMFT. We plot the spectra in Fig. 1, to show
how this change in Vdc leads to shift of oxygen-p spec-
tra relative to vanadium-d states. For the exact DC, the
oxygen peak positions match very well with the experi-
mentally measured spectra. The nominal valence is quite
close to the exact spectra, while FLL formula leads to an
upward shift of oxygen for roughly 0.6 eV, which is still
relatively small compared to the difference in the double-
counting potentials, which is V FLLdc − V exactdc ≈ 5.37 eV.

Next we present results for the Mott insulating ox-
ide LaVO3, which is solved in two ways, i) treating only
the t2g orbitals dynamically with DMFT, presented in
Table III and Fig. 2a, and ii) treating both t2g and eg
with DMFT. In the first case, the valences are similar
in all three double-counting formulas. The t2g occu-
pancy is very close to nominal value of 2. The exact
double-counting is again smaller than given by FLL or
nominal formula, which leads to a slightly larger split-
ting between oxygen-p and V-d states, i.e., slight upward
shift of oxygen states in Fig. 2a. In case ii) displayed in
Fig. 2b and tabulated in table IV, where both the t2g
and eg orbitals are treated by DMFT, the FLL formula
dramatically fails, as it overestimates the valence, i.e.,
nFLLd − nexactd ≈ 0.26. While the Mott gap does not
entirely collapse, it is severely underestimated by FLL
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FIG. 2: (Color online) LDA+DMFT total density of states
for LaVO3 using the three different DC formulas. (a) only
t2g orbitals are treated by DMFT (b) both t2g and eg or-
bitals are treated dynamically. Experimental photoemission
is reproduced from Ref. 28.

formula. The nominal valence, however, gives very simi-
lar results as the exact DC. This improvement of nominal
DC as compared to FLL was pointed our in Refs. 9, 10,
and was found to hold not just in transition metal ox-
ides but also in actinides [26]. The t2g occupancy nt2g
in the nominal and exact DC is very close to nominal
value of 2, equal to the scheme i) presented above. It is
therefore not surprising that the spectra in Fig. 2a, and
Fig. 2b are similar, with slight improvement compared to
experiment when eg orbitals are also treated by DMFT.

In summary, we presented continuum representation
of the Dynamical Mean Field Theory, which allowed us
to derive an exact double-counting between Dynamical
Mean Field Theory and Density Functional Theory. The
implementation of exact double-counting for solids shows
the improved agreement with experiment as compared to
standard FLL formula. Previously introduced nominal
DC formula [9, 10] is in very good agreement with exact
double-counting derived here.

This work was supported Simons foundation under
project ”Many Electron Problem”, and by NSF-DMR
1405303.
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