
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Bending Rules in Graphene Kirigami
Bastien F. Grosso and E. J. Mele

Phys. Rev. Lett. 115, 195501 — Published  4 November 2015
DOI: 10.1103/PhysRevLett.115.195501

http://dx.doi.org/10.1103/PhysRevLett.115.195501


Bending Rules for Nano-Kirigami

Bastien F. Grosso1,3 and E. J. Mele2,3∗
1Institute of Theoretical Physics Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne CH-1015

2Department of Physics and Astronomy University of Pennsylvania Philadelphia PA 19104 USA
3Department of Physics Loughborough University LE11 3TU UK

(Dated: October 12, 2015)

The three dimensional shapes of graphene sheets produced by nanoscale cut-and-join kirigami are
studied by combining large scale atomistic simulations with continuum elastic modelling. Lattice
segments are selectively removed from a graphene sheet and the structure is allowed to close by re-
laxing in the third dimension. The surface relaxation is limited by a nonzero bending modulus which
produces a smoothly modulated landscape instead of the ridge-and-plateau motif found in macro-
scopic lattice kirigami. The resulting surface shapes and their interactions are well described by a
new set of microscopic kirigami rules that resolve the competition between bending and stretching
energies.
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Bending and folding lifts a two dimensional material
into the third dimension and enables different physical
functionalities. In a familiar example, folds can be intro-
duced into a piece of paper to change its three dimen-
sional shape with or without allowing for tears. A lattice
model for the former case (kirigami) has been studied
recently [1] demonstrating rules for generating three di-
mensional shapes by selective removal of segments from
a parent honeycomb lattice and rejoining the holes by
sharp folds. Because the folding rules so defined are es-
sentially geometrical it is possible that they could find
applications in two dimensional nanoscale materials and
possibly even affect their electronic behavior [2].

However, applications to nanomaterials generally vi-
olate the two central tenets of macroscopic lattice
kirigami: (a) the bending modulus is nonzero prohibit-
ing the formation of sharply folded edges and (b) the
system is compressible allowing it to store energy in
shear and compressive strains. As a consequence nano-
kirigami introduces a new family of three dimensional
deformations: the regular faceted structures of macro-
scopic lattice kirigami inevitably relax to softly rolling
landscapes evocative of the English countryside. In this
Letter we study this problem for the prototypical case
of graphene sheets embedding various forms of lattice
kirigami and analyze their three dimensional shapes by
combining large scale atomistic modelling [3, 4] and anal-
ysis using long wavelength elastic theory [5–7]. The com-
petition between bend and strain energies poses a chal-
lenging minimization problem for these systems which
we find is resolved through a compact set of bending
rules. These rules which are completely absent from the
macroscopic variant of this problem are essential at the
nanoscale and generalize to a wide family of two dimen-
sional nanomaterials, guiding the controlled design of de-
sired strain and curvature fields with a microscopic cut-
and-join motif.

Figure 2 compares the out of plane deflections of

graphene disks that embed two elementary kirigami
primitives. The top panel illustrates the procedure for
generating these structures: all the models embed defects
in which atoms are initially removed from a strip (Fig.1
(a))that terminates on a dislocation with nearest neigh-
bor 5- and 7- membered rings (Fig. 1(b)). Fig. 1(c-d)
illustrate the relaxation of a (macroscopic) incompress-
ible model that allows only for sharp folds. The atoms
are reconnected along the dashed line of length d termi-
nating on dislocations. Under these conditions removal
of the hole forces the sheet into the third dimensions via
perpendicular creases that vertically displace the left and
right hand regions in the same (panel (c)) or opposite (d)
directions. The defect energy in these structures is con-
fined to the creases so that the “up-up” (uu) and “up-
down” (ud) patterns are degenerate [1]. Starting from
these structures we minimized the structural energy of
an atomistic model using interaction potentials for car-
bon developed by Los and Fasolino (LF) [3, 4] which
allow bonds to rupture and reform and provide a rea-
sonable description of the elastic properties for carbon
materials in diverse bonding environments. The struc-
tures we develop should be distinguished from patterned
graphenes retaining large open perforations designed to
allow reversible large amplitude deformations under me-
chanical loading [8, 9]. They are more akin to the fully
bonded defect structures exhibiting height modulations
found on scars that terminate on dislocation cores found
in some single layer graphenes produced by chemical va-
por deposition [10]. Two generic features of the fully
relaxed structures are apparent in the lower panels of
Figure 1(e-f). For both defects we find a smooth varia-
tion in elevation that persists into the far field with soft
pleats sourced by their near field defect structures. In
the following we are concerned with the far field deflec-
tion patterns and examine structural models with open
boundary conditions and with vertex separation d much
smaller than the lateral system size.
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FIG. 1. Relaxation of a graphene kirigami in which atoms
are removed from finite strip of flat graphene sheet (a) and
the atoms are rejoined along a line terminating on nearest
neighbor pairs of 5-7 disclinations (b). In (c) and (d) this
structure is folded into the third dimension following the rules
for macroscopic lattice kirigami. The atoms are rejoined along
the dashed line, inducing sharp creases that separate plateaus
that are displaced out of the plane in the same direction uu
(c) or in opposite directions ud (d). These structures (c) and
(d) relax to the shapes (e) and (f) generating a softly pleated
landscape. The results are for an initial disk radius R = 11.3
nm, with d = 1.86 nm (panels c and e) and d = 1.87 nm
(panels d and f).

We quantify our observations by decomposing the
height field h(r) on a disk of radius R into angular har-
monics

h(r) =
∑
m

hm(r)eimφ (1)

Figure 2(a) shows the radial dependence hm(r) for the
allowed even m amplitudes in the shape in Figure 1(e).
The relaxed structure is smooth, suppressing weight in
its large m modes and confining its amplitude to the
m = 0,±2 deformations of the disk where h2(r) (Fig.
2(b)) is an increasing function of r out to the bound-
ary. The bending energy has an areal energy density
ub = κb(∇2h)2/2 and it is extremized by solutions of the
biharmonic equation ∇4h = 0. We find that the radial
dependences of our relaxed structures hm(r) are well de-
scribed by linear combinations of these bend optimized
solutions projected into each angular harmonic subspace.
For example in the m = 2 subspace the representation

h2(r) = h−2(r) = a2 +
b2
r2

+ c2r
2 + d2r

4 (2)

FIG. 2. (a) The height field for the relaxed uu structure of
Fig. 1(e) is decomposed into its angular harmonics show-
ing the radial dependence hm(r) with dominant contributions
from m = 0,±2. (b) The m = 2 radial dependence is well
described by superposition of four solutions of a biharmonic
equation projected into the m = 2 subspace. The profile con-
tains two growing solutions with opposite signs which domi-
nate the deflection in the far field.

describes the shape as shown in Figure 2(b). Truncat-
ing the expansion (1) to include only the m = 0 and
m = ±2 solutions provides an excellent reconstruction
of the exact shape as demonstrated in Figure 3(a). The
ud structure (Fig. 1(f)) similarly relaxes to a smooth
landscape well described by a superposition m = ±1,±3
angular harmonics.

Note that the biharmonic equation admits two solu-
tions that grow in the far field and generically these are
both present in the relaxed structures but they always
appear with opposite signs. Although it is tempting to
attribute this to a boundary condition enforced at the
edge of the disk, we find instead that this can be more
easily understood as a global constraint on the shape.
The growing solutions must compete in order to avoid
a large strain energy penalty induced by their (locally)
nonzero Gaussian curvatures. Note that a linear combi-
nation of the growing solutions in Eqn. 2 makes a contri-
bution to the Gaussian curvature that is bilinear in the
expansion coefficients for h2; explicitly in the far field we
have for the determinant of the curvature tensor

C>2 = −4
(
c22 + 6c2d2r

2 + 9d22r
4 sin2(2φ)

)
(3)

Following Nelson and Peliti [6] we recall that a coupling of
the local Gaussian curvature to in-plane strain mediates
nonlocal ultra-long range interactions between remote
Gaussian curvatures, diverging in Fourier space ∝ q−4.
Consequently, for a large system under open boundary
conditions we can avoid a macroscopic energy that grows
faster than the system size if its integrated Gaussian cur-
vature vanishes. In the space of m-projected biharmonic
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solutions the residual Gaussian curvature cannot be made
to vanish everywhere and with zero mean the residual
curvature can be usefully described by its nonvanishing
moments. For m = 2 and using Eqn. 3 we find that the
disk-integrated curvature vanishes if the boundary ratio
ν = d2R

2/c2 = −0.423, in good agreement with the ratio
(∼ −0.47) obtained from the numerical calculations. We
carried out similar analysis for different structures and in
various angular momentum channels m in the expansion
(1) and find that the boundary ratio is m-dependent and
consistent with our simulation data.

The surfaces shown in Figure 1(e,f) are therefore de-
termined by three rules that resolve the competition be-
tween its bending and stretching energy in the elasti-
cally stiff (weakly compressible) limit: (1) the height
field smooths by relaxing its amplitude to its low order
symmetry-allowed angular harmonics, (2) the radial de-
pendence in each m-channel superposes biharmonic bend
optimized solutions, (3) these appear in “well-tempered”
combinations that also avoid a large strain energy penalty
by quenching the integrated Gaussian curvature. The de-
fect energy is then determined by the core energy of the
terminal dislocations, the bending energy in the extremal
solution and the strain energy imposed by its residual
Gaussian curvature.

The argument given above fixes the amplitude ratio of
the far field growing solutions but not their overall mag-
nitudes which determines the degree of “warping” of the
kirigami-ed disk. A scaling argument reveals that the lat-
ter is determined by the boundary energy on the perime-
ter of the disk, presumably arising from the inequivalence
of bulk (area) and surface (perimeter) interactions. For
example, a structure with c2 6= 0 that results from a
boundary interaction proportional to R and is opposed
by a bulk interaction proportional to R2 is described by
an energy function

U = αR2c22 + βRc2 (4)

where α > 0 and β are constants, giving c̄2 = −β/2αR.
We can express the growing solutions of Eqn. 2 in a
scaling form

h>2
R

=
−β
2α

[( r
R

)2
+ ν

( r
R

)4]
(5)

Thus for m = 2 by expressing all lengths (h, r) in units of
the disk radius R one obtains a universal warped shape
determined by the value of β. Note that this scaling rule
is m-dependent, i.e. different m’s all show scaling but are
described by different scaling functions. The full shape is
scalable to that the extent it can be described by a single
dominant angular harmonic. In Figure 3(b) we test this
hypothesis by plotting the scaled height h′ = h>2 /R ver-
sus the scaled radial coordinate r′ = r/R demonstrating
its near collapse to a single profile. We conclude that an
unwarped kirigami profile with no growing solutions is
nongeneric, and would require fine tuning the system to

FIG. 3. (a) Reconstruction of the uu surface retaining only the
m = 0,±2 angular harmonics in the height field. The left side
shows a superposition of the exact and reconstructed surfaces,
the right inset gives a lineplot along a coordinate that bisects
the two dislocations that define the kirigami cut. Results are
given for R = 12.7 nm and d = 0.15 nm. (b) Numerical test of
the scaling rule Eqn. 5 for the four different disk radii shown.

a special point at β = 0. This is evidently not a property
of the LF potentials for carbon [4] nor of any generic
model for the interparticle interactions. Therefore the
kirigami-ed disks generally feature a long distance shape
modulation that cannot be confined to the defect. We
interpret this as the microscopic analog to the step risers
in macroscopic lattice kirigami that also propagate to the
sample boundaries and connect the core defect structure
with the edge. It also suggests the possibility of tuning
the shape of our nanoscale variant by functionalizing the
boundaries to control the edge potential parameter β.

These considerations can also be used to understand
the energetics of microscopic kirigami. In macroscopic
lattice kirigami the edges are sharp and the uu struc-
ture (Fig 1(c)) is degenerate in energy with the ud struc-
ture (Fig. 1(d)). Furthermore (ignoring finite size effects
from the termination of creases at the outer edges) the
energy of an uu configuration is independent of the sep-
aration (d) of the dislocations that define the vertices of
their plateaus (Fig. 1 c and d) since the sharp steps are
nonoverlapping. These features do not apply to micro-
scopic kirigami where the height profile is smooth and
the dislocations can interact via overlap of their induced
curvature fields. In Figure 4 we compare the energies of
the uu and ud configurations as a function of the vertex
separation d. (To obtain these data the relaxation cal-
culations were carried out on square rather than circular
models so that the number of atoms is the same in each
sampled structure.) The uu configuration is energetically
preferred for any intervertex spacing d. At intermediate
separations the energy degeneracy is in fact strongly bro-
ken, for example the energy difference for a separation of
∼ 20Å is ≈ 1.0 eV.
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By analyzing these structures within continuum elas-
tic theory we conclude that these energy differences arise
from interactions that are mediated nearly entirely by the
mean curvature of the extended overlapping height fields.
The stretching energy, while present is nearly indepen-
dent of d, indicating that its role is to simply renormalize
the self energies in these structures. The interactions be-
tween defects mediated by the bending energy then lead
qualitatively to the interaction profile shown in Figure 4.
This behavior is captured even in a lowest order elastic
theory. We first calculate the Lamé coefficients λ and µ
and bending modulus κb using our model potential giving
the values presented in Table 1.

In this expansion the energy can be partitioned into a
pure bending contribution

Ub =
κb
2

∫
d2r (∇2h)2 (6)

and a strain term

Us =
1

2

∫
d2r (2µu2ij + λu2kk) (7)

where uij are the linearized strains (∂iuj + ∂jui)/2. (We
have investigated the role of the nonlinear strain terms
that can appear Eqn. 7 and find that they do not qual-
itatively change our conclusions.) Although the contri-
bution from Us can be formally eliminated in favor of a
(strongly) nonlocal interaction between Gaussian curva-
tures [6], we choose instead to simply calculate the energy
using the formula Eqn. 7.

Elastic constant fitted value

λ 3.03 eV/Å2

µ 10.67 eV/Å2

B 13.7 eV/Å2

κb 0.70 eV

TABLE I. Two dimensional Lamé coefficients, bulk modu-
lus and bending modulus obtained by fitting the structural
energies for deformed graphene sheets using the interatomic
potentials of Los and Fasolino [4].

In the continuum model one finds that energy degen-
eracy of the uu and ud geometries is resolved and the
uu configuration always favored. This can be under-
stood if one regards the height fields of the two defects
as additive. In the uu configuration the height deforma-
tions appear with opposite signs and nearly cancel in the
far field while in the ud configuration they interfere con-
structively. The bending energy (though not the Gaus-
sian curvature-induced stretching energy) is quadratic in
derivatives of h and so the relative sign of the superposed
height fields determines the sign of their interaction. This
predicts that the uu structure has lower energy and favors
small d where the cancellation is more nearly complete

FIG. 4. Energies for graphene kirigami as a function of vertex
separation d on a square sample with initial width L = 22.4
nm (inset). Energies are plotted relative to the minimum en-
ergy of the uu configuration. The uu and ud configurations
are nondegenerate and the bend-induced ud potential is re-
pulsive. These properties are described qualitatively by con-
tinuum elastic theory where the energy differences and their
dependence on d are determined mainly by the mean curva-
ture fields in the relaxed structures.

(the upturn at small d in Fig. 4 manifests the nonadditiv-
ity of the short range deflection fields). Conversely the
height fields in the ud structure never compensate and
favor large d just as seen in the lattice calculation. This
behavior captures the essential results of the full atom-
istic calculations (Fig. 4) but it fails to quantitively ac-
count for their magnitudes, as can be expected since these
structures are actually highly strained. We also note that
our fitted bending modulus in Table I (κb = 0.70 eV) is in
reasonable agreement with values (∼ 0.82 eV) previously
reported studying bending energies of graphene sheets
using similar empirical potentials [11, 12]. The micro-
scopic origin of this bare bending modulus is discussed
in Reference [12] suggesting that quantum mechanical
models yield a modulus approximately a factor of two
larger. Furthermore the bending modulus is both pre-
dicted [11] and observed [9] to be renormalized upward
by thermal fluctuations in two dimensional membranes
[11]. All these trends further support our conclusion
that bend-optimized shapes will be realized in graphene
kirigami.

Insights from the bending energetics of nanoscale
kirigami may be useful for stabilizing structures in macro-
scopic kirigami. The degeneracy of the uu and ud motifs
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is problematic for applications that would seek to stabi-
lize a single target shape. This can be resolved by the
introduction of macroscopic couplings that introduce an
effective bending rigidity. Braces that suppress or pro-
mote bending can be engineered to introduce nonlocal
coupling between neighboring step risers and provide a
route to encoding a unique surface structure.

The analytic structure of our graphene-kirigami solu-
tions also have important consequences for its Dirac elec-
tronic structure near charge neutrality. In these struc-
tures topological defects in their bond networks induce
surface deformations with bend and (locally) nonzero
Gaussian curvature. Separately, these structural fea-
tures all couple to electronic motion in the tangent plane
[13–17] where the natural language for this coupling in-
volves valley asymmetric bend- and strain-induced gauge
fields [16]. The gauge fields induced by pure bending
are curl-free and have the innocuous effect of simply
shifting the Dirac points in momentum space. By con-
trast Gaussian curvature is topologically nontrivial and
links the system with a (valley dependent) local flux [15].
The essential characteristic of the m-projected solutions
presented above is that a competition between bending
and stretching energies generates a landscape where the
Gaussian curvature is globally compensated (so that the
total pseudo-flux is zero) but this can only be accom-
plished by sign changes on a network of nodal lines that
carry the signature of the fully relaxed kirigami. The
possibility of confining electronic modes along these lines
and their role in defining the low energy spectral and
transport properties now presents an important problem
for further study.
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