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We match the results for the subthreshold parameters of pion–nucleon scattering obtained from a
solution of Roy–Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading
order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic
uncertainties and correlations. We study the convergence of the chiral series by investigating the
chiral expansion of threshold parameters up to the same order and discuss the role of the ∆(1232)
resonance in this context. Results for the low-energy constants are also presented in the counting
scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to
determine the long-range part of the nucleon–nucleon potential as well as three-nucleon forces.
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INTRODUCTION

Chiral symmetry of QCD, the invariance of the QCD
Lagrangian under chiral rotations of the quark fields in
the chiral limit of vanishing quark masses, is a power-
ful tool to elucidate the properties of strong interactions
at low energies, where QCD becomes non-perturbative.
This chiral symmetry is known to be broken sponta-
neously and explicitly, with the appearance of almost
massless pseudo-Goldstone bosons, the pions. By ex-
panding systematically around the chiral limit of van-
ishing quark/pion masses, one obtains an expansion in
momenta and quark masses, with non-analytic terms pre-
dicted and the effects of high-energy physics incorporated
in low-energy constants (LECs). These LECs appear in
different physical processes, so that once fixed in one pro-
cess, they can be used to predict others. In particular,
one can derive low-energy theorems that relate differ-
ent observables, at a given order in the chiral expansion.
This approach, Chiral Perturbation Theory (ChPT), was
pioneered in the meson sector in [1–3], and manifold ex-
tensions have been worked out over the last decades. In
particular, it has been extended to the single-baryon sec-
tor, see [4–6], with pion–nucleon (πN) scattering as one
of the most fundamental applications [5, 7–15].

However, as first pointed out in [16–18], constraints
from chiral symmetry are by no means limited to sys-
tems with at most one nucleon: once so-called nucleon–
nucleon (NN) reducible contributions are separated, the
remaining irreducible parts of the NN potential again
permit a chiral expansion, despite the non-perturbative
nature of the NN interactions. In this way, Nuclear
Chiral Effective Field Theory (ChEFT), the extension
of ChPT to the multi-nucleon sector, has been developed

as a powerful tool for a systematic, model-independent
approach to nuclear forces, see [19, 20] for recent reviews.
One particularly valuable feature of ChEFT concerns the
prediction of a hierarchy between two- and multi-nucleon
forces, with the NN interactions starting at leading order
(LO), three-nucleon forces are predicted to enter at next-
to-next-to-leading (N2LO) order, and even higher forces
are accordingly suppressed [21]. Further, the LECs ap-
pearing in the expansion relate different processes. In
fact, the LECs that appear in πN scattering determine
the long-range part of the NN potential and the three-
nucleon force. Accordingly, if sufficiently precise informa-
tion on πN scattering were available, the required input
could be immediately used in multi-nucleon applications.
This is the aim of the present Letter.

Such improved input for the πN LECs is becoming
increasingly urgent, since with higher orders in ChEFT
being worked out the uncertainties in the πN LECs are
starting to significantly contribute to the error budget in
some observables, see e.g. [22]. In the past, several strate-
gies have been pursued: extractions from πN scattering
data, either in terms of phase shifts [11, 23] or cross sec-
tions [24], determinations from NN observables [25, 26],
or a combination of both [27]. Moreover, in [9] the match-
ing with a reconstructed dispersive πN amplitude was
performed in the subthreshold region where ChPT is ex-
pected to converge best, but the extrapolation from the
physical region still required input from πN data (sim-
ilarly, while starting from the subthreshold region, the
LECs are determined from fits to phase shifts in [13]).
Given that the long-range contributions are entirely de-
termined by πN physics, πN scattering provides the
cleanest access and offers, at least for most LECs, also
the highest sensitivity for their extraction. However, such



2

a program has been hampered by inconsistencies in the
low-energy πN data base, as exemplified by contradict-
ing partial-wave analyses, the Karlsruhe–Helsinki [28, 29]
and the GWU/SAID solutions [30].
In ππ scattering, a similar situation prevailed until the

consequent use of Roy equations [31], a combination of
constraints from analyticity, unitarity, and crossing sym-
metry in the form of coupled integral equations for the
partial waves. This significantly advanced the knowl-
edge of the low-energy ππ phase shifts [32, 33]. Indeed,
the matching to ChPT then allowed for a very precise
determination of the pertinent ππ LECs [34]. Mean-
while, Roy-equation techniques have been extended to
other processes [35, 36], in particular, a similar program
has been pursued for πN scattering based on Roy–Steiner
(RS) equations [37–40], making use of a high-accuracy ex-
traction of the πN scattering lengths from pionic atoms
as an additional constraint [41–45]. In this Letter, we
work out the consequences of our RS solution for the
πN LECs by matching the RS and the ChPT represen-
tation of the πN amplitude in the subthreshold region.
The main advantages of such an approach are the follow-
ing: first, the πN amplitude in the subthreshold region
is a polynomial in the Mandelstam variables (apart from
the Born terms), so that the chiral series is expected to
converge best there. In contrast to [9], we do not need
additional input from the physical region, as in our case
the subthreshold parameters follow from the RS solution
alone. Second, the matching amounts to equating the
subthreshold parameters from [40, 46] with their chiral
expansion, which reduces the determination of the LECs
to an algebraic problem. Third, we can use the compre-
hensive error analysis performed in [40, 46], which trans-
lates to a full covariance matrix for the extracted LECs.

SUBTHRESHOLD PARAMETERS

We start by specifying conventions for the process

πa(q) +N(p) → πb(q′) +N(p′), (1)

with pion isospin labels a, b and Mandelstam variables

s = (p+ q)2, t = (p′ − p)2, u = (p− q′)2, (2)

fulfilling s + t + u = 2m2
N + 2M2

π . We parameterize the
scattering amplitude as

T ba(ν, t) = δbaT+(ν, t) +
1

2
[τb, τa]T−(ν, t),

T I(ν, t) = ū(p′)

{

DI(ν, t)−
[/q

′, /q]

4mN

BI(ν, t)

}

u(p), (3)

where ν = (s− u)/(4mN), the isospin index I = ± refers
to isoscalar/isovector amplitudes, mN and Mπ to the nu-
cleon and pion mass, and τa denotes isospin Pauli matri-
ces. Throughout, the amplitudes with a definite I = ±

d
+
00 [M

−1
π ] −1.36(3) d

−

00 [M
−2
π ] 1.41(1)

d
+
10 [M

−3
π ] 1.16(2) d

−

10 [M
−4
π ] −0.159(4)

d
+
01 [M

−3
π ] 1.16(2) d

−

01 [M
−4
π ] −0.141(5)

d
+
20 [M

−5
π ] 0.196(3) b

−

00 [M
−2
π ] 10.49(11)

d
+
11 [M

−5
π ] 0.185(3) b

−

10 [M
−4
π ] 1.00(3)

d
+
02 [M

−5
π ] 0.0336(6) b

−

01 [M
−4
π ] 0.21(2)

b
+
00 [M

−3
π ] −3.45(7)

TABLE I: Subthreshold parameters from the RS analysis [40,
46].

index are understood to be related to the π±p → π±p
charge channels according to

X± ≡ 1

2

(

Xπ−p→π−p ±Xπ+p→π+p

)

, (4)

for X ∈ {D,B, . . .}, and the nucleon and pion mass are
identified with the masses of the proton and the charged
pion, respectively, see [40] and [47–50] for a discussion of
the pertinent isospin-breaking corrections. As mentioned
above, once the Born terms are subtracted, the amplitude
in the subthreshold region becomes a polynomial in ν and
t. A particularly convenient representation is provided by
the subthreshold expansion

D̄±(ν, t) =

(

1
ν

) ∞
∑

n,m=0

d±mnν
2mtn,

B̄±(ν, t) =

(

ν
1

) ∞
∑

n,m=0

b±mnν
2mtn, (5)

where the upper/lower entry corresponds to I = ±, and
the Born-term-subtracted amplitudes are defined as

X̄±(ν, t) = X±(ν, t)−X±

pv(ν, t), X ∈ {D,B}, (6)

with

B±

pv(ν, t) = g2
(

1

m2
N − s

∓ 1

m2
N − u

)

− g2

2m2
N

(

0
1

)

,

D±

pv(ν, t) =
g2

mN

(

1
0

)

+ νB±

pv(ν, t), (7)

where g denotes the πN coupling constant.
For the matching to ChPT at N3LO (complete one-

loop order) we need the 13 subthreshold parameters listed
in Table I. The solution of the RS equations is obtained
by minimizing a χ2-like function, defined as the difference
between left- and right-hand side of the equations on a
grid of points, with respect to the subtraction constants
and the low-energy phase shifts. Most of the subthresh-
old parameters listed in Table I already appear as sub-
traction constants of the RS system, and thus follow as
output from the RS solution, while the remaining ones,



3

d+20, d
+
11, and d+02, are calculated from sum rules after-

wards. The uncertainty estimates include a number of
effects: first, the RS equations are valid only in a finite
energy range below the so-called matching point and only
a finite number of partial waves are included explicitly in
the solution. We varied the input for the matching condi-
tion as well as for the energy region above the matching
point and higher partial waves, both regarding different
partial-wave analyses and truncations of the partial-wave
expansion. Furthermore, we varied the input for the πN
coupling constant within g2/(4π) = 13.7(2) [44, 45] and
investigated the sensitivity to the parameterization of the
low-energy phase shifts used in the solution. Second,
we observed that the RS equations are more sensitive to
some subthreshold parameters than others. To account
for this effect, we generated a set of solutions correspond-
ing to different starting values of the χ2-minimization,
while imposing sum rules for the higher subthreshold pa-
rameters, and took the observed distribution as an addi-
tional source of uncertainty. Third, we propagated the
errors in the scattering lengths, which crucially enter as
constraints in the minimization, to the results for the
subthreshold parameters. Taking everything together we
obtain a 13 × 13 covariance matrix that encodes uncer-
tainties and correlations of the 13 subthreshold parame-
ters relevant for the matching to ChPT.

CHIRAL EXPANSION

The chiral expansion for the subthreshold parameters
is spelled out explicitly in [12], in particular

d+00 = −2M2
π(2c1 − c3)

F 2
π

+
g2A

(

3 + 8g2A
)

M3
π

64πF 4
π

(8)

+M4
π

{

16ē14
F 2
π

+
3g2A

(

1 + 6g2A
)

64π2F 4
πmN

− 2c1 − c3
16π2F 4

π

}

,

d−00 =
1

2F 2
π

+
4M2

π(d̄1 + d̄2 + 2d̄5)

F 2
π

+
g4AM

2
π

48π2F 4
π

−M3
π

{

8 + 12g2A + 11g4A
128πF 4

πmN

− 4c1 + g2A(c3 − c4)

4πF 4
π

}

,

where ci, d̄i, and ēi denote the NLO, N2LO, N3LO πN
LECs, respectively, Fπ the pion decay constant, and gA
the axial coupling of the nucleon. The conventions for
the ēi correspond to the general classification [10] and
the ci have been redefined to absorb a quark-mass renor-
malization, see [11, 23]. Finally, the expressions in (8)
follow the standard counting in the single-nucleon sec-
tor, where the expansion parameter is given by O(p) =
{p,Mπ}/Λb, for momenta p and the breakdown-scale
Λb ∼ Λχ ∼ 4πFπ ∼ mN ∼ Mρ ∼ 1GeV. In contrast,
the breakdown-scale in few-nucleon applications is typ-
ically lower, Λb ∼ 0.6GeV, so that relativistic correc-
tions are often counted as {p,Mπ}/mN = O(p2) [17].

NLO N2LO N3LO N3LONN

c1 −0.74(2) −1.07(2) −1.11(3) −1.10(3)

c2 1.81(3) 3.20(3) 3.13(3) 3.57(4)

c3 −3.61(5) −5.32(5) −5.61(6) −5.54(6)

c4 2.17(3) 3.56(3) 4.26(4) 4.17(4)

d̄1 + d̄2 — 1.04(6) 7.42(8) 6.18(8)

d̄3 — −0.48(2) −10.46(10) −8.91(9)

d̄5 — 0.14(5) 0.59(5) 0.86(5)

d̄14 − d̄15 — −1.90(6) −13.02(12) −12.18(12)

ē14 — — 0.89(4) 1.18(4)

ē15 — — −0.97(6) −2.33(6)

ē16 — — −2.61(3) −0.23(3)

ē17 — — 0.01(6) −0.18(6)

ē18 — — −4.20(5) −3.24(5)

TABLE II: Results for the πN LECs at NLO, N2LO, and
N3LO (standard and NN counting only differ at N3LO,
except for NLO in c4, which in the NN scheme becomes
2.44(3)). The results for the ci, d̄i, and ēi are given in units
of GeV−1, GeV−2, and GeV−3, respectively.

As a consequence, in this counting one would drop the
1/mN suppressed terms in (8). In this Letter, we con-
sider both counting schemes, which we will refer to as
standard and NN counting in the following. The full set
of subthreshold parameters can be easily inverted for the
LECs, for the result at different chiral orders see Table II
(masses, Fπ , and gA are taken from [51]). The errors as
propagated from the subthreshold parameters are tiny
compared to the shifts observed between chiral orders:
clearly, the dominant uncertainty now resides in the chi-
ral expansion. For completeness, we also quote the N3LO
correlation coefficients, see Table III. Note that this ta-
ble contains the correlation matrices for the standard and
the NN counting and therefore appears asymmetric.

In general, the values for the LECs are expected to be
O(1), e.g. ci ∼ gA/Λb [6] and significant departures in-
dicate the presence of additional degrees of freedom. In
the case of c2−4 the main origin of their enhancement is
well understood: while other resonances do contribute as
well, it is primarily the presence of the ∆(1232) resonance
that makes these LECs take unnaturally large values [52–
54]. Following [54], we extract the ∆ contributions to the
individual subthreshold parameters from the correspond-
ing tree-level ∆-exchange diagrams and convert the re-
sult to the LECs. For the numerical analysis we use the
∆ coupling constant gπN∆ = 1.2 [29], which lies right
in the middle of the range 1.05 (extracted from the ∆
width [55]) and 3gA/(2

√
2) = 1.35 (predicted by large

Nc [56]). Keeping the full pion-mass dependence, we ob-
tain the values shown in the first column of Table IV,
while the second column corresponds to the leading ex-
pansion in Mπ and m∆ − mN . Only in the latter case
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c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 − d̄15 ē14 ē15 ē16 ē17 ē18

c1 1 0.18 0.58 0.06 −0.42 0.71 0.04 0.47 −0.59 0.33 −0.21 −0.11 −0.21

c2 −0.20 1 −0.64 −0.01 0.67 −0.36 −0.27 −0.55 0.56 −0.59 0.59 0.21 0.47

c3 0.58 −0.86 1 0.04 −0.86 0.91 0.16 0.87 −0.97 0.68 −0.60 −0.24 −0.46

c4 0.06 −0.03 0.04 1 0.18 −0.22 0.03 −0.31 −0.02 0.07 −0.08 −0.61 −0.63

d̄1 + d̄2 −0.42 0.83 −0.86 0.18 1 −0.83 −0.40 −0.94 0.88 −0.77 0.74 0.23 0.34

d̄3 0.68 −0.63 0.90 −0.25 −0.83 1 0.05 0.93 −0.94 0.53 −0.47 −0.07 −0.17

d̄5 0.04 −0.28 0.16 0.03 −0.40 0.03 1 0.18 −0.14 0.40 −0.29 −0.18 −0.29

d̄14 − d̄15 0.47 −0.73 0.87 −0.31 −0.94 0.93 0.18 1 −0.91 0.64 −0.61 −0.03 −0.21

ē14 −0.60 0.77 −0.97 −0.02 0.88 −0.94 −0.13 −0.91 1 −0.70 0.65 0.23 0.43

ē15 0.33 −0.72 0.68 0.07 −0.77 0.52 0.40 0.64 −0.69 1 −0.97 −0.28 −0.65

ē16 −0.21 0.67 −0.60 −0.08 0.74 −0.45 −0.29 −0.61 0.65 −0.97 1 0.29 0.60

ē17 −0.11 0.25 −0.24 −0.61 0.23 −0.05 −0.18 −0.03 0.23 −0.28 0.29 1 0.19

ē18 −0.20 0.55 −0.46 −0.63 0.34 −0.14 −0.29 −0.20 0.42 −0.65 0.60 0.19 1

TABLE III: Correlation coefficients at N3LO in standard (upper-right triangle) and NN (lower-left triangle) counting.

c
∆
1 0.0 0.0 d̄

∆
1 + d̄

∆
2 1.9 1.9 ē

∆
14 −0.4 0.0

c
∆
2 1.6 2.2 d̄

∆
3 −0.9 −1.9 ē

∆
15 −2.6 −3.2

c
∆
3 −2.1 −2.2 d̄

∆
5 −0.4 0.0 ē

∆
16 1.4 3.2

c
∆
4 1.2 1.1 d̄

∆
14 − d̄

∆
15 −2.9 −3.7 ē

∆
17 0.3 0.0

ē
∆
18 1.1 1.6

TABLE IV: ∆ contributions to the πN LECs, in GeV units,
for the full ∆-exchange diagrams (first column) and to leading
order in Mπ and m∆ −mN (second column).

one recovers the relation c∆2 = −c∆3 = 2c∆4 [53].

While the ∆ can indeed explain a significant por-
tion of the physical values of the ci, its effect is too
small to explain the large numbers for the d̄i that ap-
pear at N3LO (except for d̄5). The origin of this large
shift can be traced back to the terms proportional to
g2A(c3 − c4) ∼ −16GeV−1 in d−00 in (8) (and similarly
in d−10, d

−

01, and b+00). These terms mimic loop diagrams
with ∆ degrees of freedom. Our results show that if the
∆ is not included explicitly, such contributions lead to
a substantial renormalization of the LECs. Indeed, if
we drop the c3 − c4 loop terms, the d̄i are reduced to
d̄1+2,3,14−15 = (2.2,−3.9,−2.6)GeV−2, in good agree-
ment with the expectations from Table IV.

THRESHOLD PARAMETERS

With the LECs determined by matching to the sub-
threshold expansion, it is important to check how well
the chiral series converges in other kinematic regions.
A prime test case is provided by the S-wave scattering
lengths a±0+: they are known very precisely from pionic
atoms [44, 45]. In the isospin conventions (4) their values

are a+0+ = −0.9(1.4) and a−0+ = 85.4(9) (always in units
of 10−3M−1

π ), and the problem is still purely algebraic.
The fourth-order expressions for their chiral expansion
were first given in [57], in our conventions they read

a+0+ =
M2

π

4πF 2
π (mN +Mπ)

{

3g2AmNMπ

64πF 2
π

− g2AM
2
π

16m2
N

− 1

4

[

g2A + 8mN(2c1 − c2 − c3)
]

+M2
π

[

− 16c1c2 + d̄18gA + 16mN(ē14 + ē15 + ē16)
]

− M2
π

[

8− 3g2A + 2g4A + 4mN (2c1 − c3)
]

64π2F 2
π

}

,

a−0+ =
mNMπ

8πF 2
π (mN +Mπ)

{

1 +
M2

π

8π2F 2
π

+
g2AM

2
π

4m2
N

+ 8M2
π(d̄1 + d̄2 + d̄3 + 2d̄5)

}

. (9)

Fixing the only new LEC, d̄18, from the Goldberger–
Treiman discrepancy,

d̄18 =
gA
2M2

π

(

1− gFπ

mNgA

)

= −0.44(24)GeV−2, (10)

we obtain the following results

a+0+ = {−23.8, 0.2,−7.9}, {−14.2, 0.2,−1.4},
a−0+ = {79.4, 92.9, 59.4}, {79.4, 92.2, 69.2}, (11)

where the first/second array refers to the standard/NN
counting and the three entries to NLO, N2LO, N3LO. It
is not surprising that the chiral expansion in the isoscalar
sector is slow, after all its LO vanishes. Unexpectedly, a
similarly slow convergence is also found for a−0+, whose
low-energy theorem at LO is tantalizingly close to the full
answer, while the agreement in both counting schemes
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deteriorates when going to fourth order. The largest
part of this discrepancy can be attributed to the ∆ loops
discussed above, i.e. for a−0+ the largest portion of the
c3−c4 terms does cancel between d̄1+ d̄2 and d̄3, but the
cancellation is incomplete and the remainder spoils the
agreement with the pionic-atom value.
This example shows that in a theory without explicit

∆ degrees of freedom the LECs determined in a partic-
ular kinematic region do not necessarily ensure conver-
gence in the full low-energy domain. However, especially
when going to higher orders, including the ∆ explicitly
becomes extremely challenging, so that in practice the
∆-less approach can be pushed to higher orders and it re-
mains to be seen if in the end the ∆-full or ∆-less theory
proves more efficient. We argue here that for ∆-less ap-
plications inNN scattering matching at the subthreshold
point is the preferred choice: the two-pion-exchange dia-
grams can be reconstructed from πN scattering by means
of Cutkosky rules [58] (see [59, 60] for recent applica-
tions of this approach), with spectral functions involving
πN amplitudes either directly evaluated at or weighted
towards zero pion center-of-mass momenta [58], which
translates to s = m2

N −M2
π . Moreover, for physical val-

ues of the momentum transfer t in NN scattering the
Cauchy kernels in the spectral integrals become largest
for t = 0. Since the corresponding combination of (s, t) is
much closer to subthreshold (m2

N+M2
π, 0) than threshold

((mN +Mπ)
2, 0) kinematics, we conclude that the LECs

to be applied in nuclear forces should be extracted from
the subthreshold point in πN scattering instead of the
physical region. In the present Letter we have presented
such an extraction based on a comprehensive analysis of
low-energy πN scattering in the framework of RS equa-
tions. The corresponding LECs clearly defined at a given
chiral order will be valuable for assessing the uncertain-
ties from the long-range part of the nuclear force in future
ChEFT calculations [61, 62].
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