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We demonstrate that dynamical probes provide direct means of detecting the topological phase
transition (TPT) between conventional and topological phases, which would otherwise be diffi-
cult to access because of loss or heating processes. We propose to avoid such heating by rapidly
quenching in and out of the short-lived topological phase across the transition that supports gapless
excitations. Following the quench, the distribution of excitations in the final conventional phase
carries signatures of the TPT. We apply this strategy to study the TPT into a Majorana-carrying
topological phase predicted in one-dimensional spin-orbit-coupled Fermi gases with attractive inter-
actions. The resulting spin-resolved momentum distribution, computed by self-consistently solving
the time-dependent Bogoliubov-de Gennes equations, exhibit Kibble-Zurek scaling and Stückelberg
oscillations characteristic of the TPT. We discuss parameter regimes where the TPT is experimen-
tally accessible.

PACS numbers: 03.75.Ss, 05.30.Rt, 05.30.Fk, 03.65.Vf

Systems of ultracold atoms provide one of the most ver-
satile platforms for realizing many-body quantum phases
of matter. In fact, several quantum phases and phase
transitions such as the superfluid-Mott transition [1–6]
have been realized in such systems. Yet, many of the
most interesting phases or phase transitions in such sys-
tems are yet to be observed. One of the most glaring ex-
amples is the elusive antiferromagnetic Néel order [7, 8]
in the fermionic Hubbard model, which is believed to be
a precursor of superconductivity in the model. Another
example is the recently-proposed family of phases based
on the realization of spin-orbit coupling (SOC) by arti-
ficial gauge fields [9–13], which includes topological in-
sulators [14–16], topological superfluids (TSFs) [17–22],
and fractional quantum Hall phases [23]. A generic ob-
struction to the observations of many of these phases is
heating due to spontaneous emission from applied laser
fields. The heating problem makes it difficult to cool into
the equilibrium thermal state of many of these topologi-
cal phases. To study these phases, one can also prepare a
gapped non-topological state and ramp the Hamiltonian
to drive the system from the non-topological to topo-
logical state. However, the properties of the short-lived
topological phase are difficult to probe while it is subject
to thermal fluctuations.

In this Letter, we propose a dynamical solution to the
problem of studying the short-lived topological phase
by starting the system in its long-lived non-topological
phase and driving it into the topological phase and back.
The rapid nature of this process obviates heating; this
is expected to make our proposal easily implementable
in experiments. The process involves crossing the quan-
tum phase transition between the phases, which supports
gapless excitations. Driving through the gapless phase

transition produces excitations in the gapped phase via
the Landau-Zener (LZ) transitions [24, 25] with a de-
fect density that demonstrates Kibble-Zurek (KZ) scal-
ing [26–35]. More interestingly, our dip-in-dip-out strat-
egy, where the system is driven through the phase transi-
tion and back, leads to the Stückelberg interference phe-
nomenon [36, 37] between the two LZ transitions which in
turn results in oscillations of the momentum and energy
distribution of the excitations with the ramp rate. In
many cases the unique ramp-rate dependence of the ex-
citations’ momentum distributions can be measured via
standard time-of-flight techniques. This provides an ex-
perimentally viable test for the dynamical fingerprints of
the topological phase transition (TPT), whose equilib-
rium properties would otherwise be hard to access.

While this general idea applies to many phase transi-
tions in ultracold bosonic and fermionic systems [34, 38–
40], we focus on phase transitions whose dynamical prop-
erties are well-understood [20–22, 40–48]. In particu-
lar, we apply this idea to the proposed TSFs [20–22]
in systems of ultracold atoms which host the Majorana
modes [49–53]. Two of the key ingredients [54] for re-
alization of TSFs, namely controllable Zeeman coupling
and fermionic Cooper-pairing are readily available in cold
atomic systems. The recent realization of synthetic SOC
in cold atoms [9–13] provides the third critical ingredient
for realizing topological superfluidity thus opening up the
possibility of observing topological phases in ultracold
atomic setting. In addition, the challenges of spatial and
energy resolved spectroscopy are easily resolved [19, 55].
Despite the advantages of these proposals, the detection
of TSFs in cold atomic systems is made difficult by the
low temperature scales involved combined with the heat-
ing associated with SOC.
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For the 1D spin-orbit-coupled Fermi gases (SOCFGs)
studied here, the TPT is accessed by raising the Zeeman
field past a critical value [17–19, 54]. Using the self-
consistent time-dependent Bogoliubov-de Gennes equa-
tion (td-BdGE) formalism, we calculate the spin-resolved
momentum distribution (SRMD) of the SOCFGs as it is
ramped across the TPT through our dip-in-dip-out pro-
tocol described earlier. We find that the dynamics of the
SRMD reflect both Stückelberg interference phenomenon
and KZ scaling behavior for appropriate experimentally
accessible ramp rates. We demonstrate that these oscilla-
tions and the scaling behavior persist at finite initial tem-
perature and are robust features of the TPT separating
the conventional and topological phases of the Fermi su-
perfluids (SFs). While a gap closing is not by itself unique
to TSFs, a closing of the gap of non-degenerate Bogoli-
ubov quasiparticles spectrum at zero momentum [56] is
a yet experimentally unobserved smoking gun signature
for a TPT.

We study 1D fermionic atoms with SOC and attractive
s-wave interactions. The SOC is generated by a pair of
counterpropagating Raman lasers, with recoil wavevec-
tor kr, energy Er = ~2k2r/2m, and characteristic time
scale tr = ~/Er, giving the SOC strength α = ~2kr/m.
These lasers couple two hyperfine atomic states repre-
senting the pseudospins σ =↑, ↓ (for example, |↑〉 ≡
|f = 9/2,mF = −7/2〉 and |↓〉 ≡ |f = 9/2,mF = −9/2〉
in 40K atoms [57]). The transverse Zeeman potential
strength ΩR, set by the Raman coupling strength [9], is
varied in time to drive the TPT. Here we consider varying
ΩR linearly from 0 to ΩRf in a time tramp, and back in the
same time: a piecewise linear ramp protocol of duration
2tramp, see blue curve in Fig. 1(a). Because our protocol
starts with Raman lasers off (ΩR = 0), it is straightfor-
ward to experimentally realize a long-lived conventional
SF as the initial state [58]; as we will see below, tramp

is much less than the system’s lifetime (either limited by
the spontaneous emission of the Raman lasers or inelastic
scattering from the Feshbach resonances).

The system’s Hamiltonian in the Nambu basis
Ψk(t) = [ψk↑(t), ψk↓(t), ψ

†
−k↓(t),−ψ

†
−k↑(t)]

> is H(t) =
1
2

∫
dkΨk(t)†HBdG,k(t)Ψk(t), where ψkσ(ψ†kσ) denote the

annihilation (creation) operators for fermions with mo-
mentum k and spin σ. The Bogoliubov-de Gennes (BdG)
Hamiltonian is [19, 59–61]

HBdG,k(t) = ξk(t)τz + αkτzσz +
ΩR(t)

2
σx + ∆(t)τx, (1)

where σ and τ are vectors of Pauli operators act-
ing on spin and particle-hole space respectively. Here
ξk(t) = ~2k2/2m− µ(t) combines the kinetic energy and
the chemical potential µ(t), which is determined self-
consistently to keep the number of atoms fixed.

The mean-field pairing potential

∆(t)eiϑ(t) = g1D

∫
〈ψk↑(t)ψ−k↓(t)〉dk (2)
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FIG. 1. (Color online) (a) Time profiles of ΩR(t), ∆(t), and

Ẽ0(t) for tramp = 1000tr. The dashed lines denote the times
whose instantaneous band diagrams are plotted in (b). The
red dashed lines mark the critical times when TPT hap-
pens and the shaded region corresponds to the topological
regime. Plots are obtained from numerically solving the td-
BdGE [Eq. (9)] self-consistently [Eq. (10)] with initial pa-
rameters: µ(0) = 0, ∆(0) = 2Er, α = 2 and ΩR(0) = 0 for
tramp = 1000tr. (b) Quasiparticle spectra at different Zeeman
potentials ΩR. From top to bottom, the energy bands are la-
beled by E2,k, E1,k, E−1,k and E−2,k. The parameters are:
(i) ΩR = 0, ∆ = 2Er, µ = 0, (ii) ΩR = 1.56Er, ∆ = 1.93Er,
µ = −0.02Er, (iii) ΩR = 2.8Er, ∆ = 1.4Er, µ = −0.14Er,
and (iv) ΩR = 3.12Er, ∆ = 0.91Er, µ = −0.3Er.

is also self-consistently determined, where 〈. . . 〉 denotes
averaging with respect to the initial thermal distribution.
The attractive effective 1D coupling constant g1D < 0
can be controlled by Feshbach tuning the 3D scattering
length [62–64]. In Eq. 1, we used the transformed basis
where ψkσ(t)→ ψkσ(t) exp[iϑ(t)/2], giving a real pairing
potential: ∆(t) exp[iϑ(t)]→ ∆(t).

The instantaneous quasiparticle excitation spectrum
of the BdG Hamiltonian [cf. Fig. 1(b)] consists of four
bands, En,k = sgn(n)ε(−1)n,k where n = ±1,±2 and

ε2±,k(t) =
ΩR(t)2

4
+ ∆(t)2 + ξk(t)2 + α2k2 (3)

±2

√
ξk(t)2

[
α2k2 +

ΩR(t)2

4

]
+ ∆(t)2

ΩR(t)2

4
.
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Since HBdG,k respects particle-hole symmetry, the spec-
trum is symmetric around E = 0. As shown in Fig. 1(b),
the instantaneous energy spectrum is gapped for k 6= 0,
however, for k = 0 the gap closes when ε−,0(t) =

ΩR(t)/2 −
√

[∆(t)2 + µ(t)2 = 0. Such a gap closing
without change in the symmetry of the ground state
(which remains SF for all ΩR) signifies a TPT [54, 59, 60]
between topological [ε−,0(t) > 0] and conventional SF
phases [ε−,0(t) < 0]. For ΩR = 0, the positive and nega-
tive bands are doubly degenerate at k = 0; any non-zero
ΩR lifts this degeneracy.

To study the dynamics around the TPT, we propose
to prepare conventional SFs [ε−,0(t) < 0] at non-zero
temperature T . We then drive the system through the
TPT by changing ΩR according to our ramp protocol

with ΩRf > 2
√

∆2
f + µ2

f (where the subscript f denotes

the quantities at time t = tramp) such that the ramp
crosses the TPT (cf. Fig. 1).

We first analytically study the dynamics, considering
the simple case of slow ramps at T = 0. In this limit, ex-
citations occur near k = 0 and at the transition times t =
tc(1,2), given by the roots of ΩR(tc) = 2

√
∆(tc)2 + µ(tc)2,

where the Fermi gas changes from conventional to TSF
and vice versa. For ~2k2/2m� αk, we approximate

HBdG,k(t) ≈ αkτzσz − µ(t)τz +
ΩR(t)

2
σx + ∆(t)τx. (4)

In this limit, excitations occur only between the E1,k and
E−1,k bands [cf. Fig. 1(b)]. At k = 0, the eigenenergies

are ±Ẽ0(t) where Ẽ0(t) = |
√

∆(t)2 + µ(t)2 − ΩR(t)/2|
with eigenstates φ̃+0 (t) = (cos[θ(t)/2], sin[θ(t)/2]) ⊗
(1, 1)/

√
2 and φ̃−0 (t) = (− sin[θ(t)/2], cos[θ(t)/2]) ⊗

(1,−1)/
√

2, where φ̃±0 (t) corresponds to positive and neg-
ative bands [with pseudospin |±〉 ≡ (|↑〉 ± |↓〉)/

√
2] and

cos θ(t) ≡ µ(t)/(
√

∆(t)2 + µ(t)2). In the subspace of
these eigenstates, the effective low-energy Hamiltonian
near k = 0 is

H̃BdG,k(t) = α̃(t)kηx + Ẽ0(t)ηz, (5)

where α̃(t) = α sin θ(t), ηx = φ̃+0 (t)[φ̃−0 (t)]† + h.c.,

ηz = φ̃+0 (t)[φ̃+0 (t)]†− φ̃−0 (t)[φ̃−0 (t)]†, and 2ηy = −i[ηz, ηx].
Equation (5) is a two-parameter driven Hamiltonian [61]

with instantaneous energy eigenvalues ±Ẽk(t) where

Ẽk(t) =

√
Ẽ0(t)2 + α̃(t)2k2.

We analyze the dynamics of the TPT using H̃BdG,k(t)
where the single-particle state of the system at time t is
given by

φ̃k(t) = b+k (t)

(
w+
k (t)

sgn(k)w−k (t)

)
+ b−k (t)

(
− sgn(k)w−k (t)

w+
k (t)

)
,

(6)
with the initial condition b−k (0) = 0 and b+k (0) = 1. These

two-component vectors are expressed in the basis φ̃±0

with w±k (t) =

√
[1± Ẽ0(t)/Ẽk(t)]/2. The Schrödinger

equation for the system then leads to i~∂t~bk(t) =

H̃BdG,k(t)~bk(t) where ~bk(t) = [b+k (t), b−k (t)]>.

We make further analytical progress by ignoring the
self-consistency condition so that the system can be
treated as a collection of two-level system for each
(k,−k) pair and use the adiabatic-impulse approximation
[37, 65–69] which describes such periodic dynamics accu-
rately for low frequency and/or large amplitude drives.
Within this approximation, excitations are produced only
near the critical gap-closing times tc(1,2) when the system
enters the impulse regime; otherwise the dynamics occur
adiabatically in each band and the system accumulates
dynamical phase U(tf , ti) = exp[−iηz

∫ tf
ti
dtẼk(t)/~]. In

the former regime, near the gap-closing times tc(1,2), ex-
citations are produced and the evolution operator is [37]

N =
√

1− pk[i sin(ϕS,k)− ηz cos(ϕS,k)]− iηy
√
pk, (7)

where pk = exp (−2πδk) is the probability of exci-
tation formation in each passage through the critical
point [24, 25] with δk = (αk)2/(2~|dẼ0(t)/dt|tc), and
ϕS,k = π/4 + δk(ln δk − 1) + arg Γ(1 − iδk) is the Stokes
phase originating from the interference of the parts of the
system wavefunction in the instantaneous ground and ex-
cited states at t = tc(1,2). These results give the proba-
bility of defect formation

P ex
k = 4pk(1− pk) sin2 ΦSt,k (8)

at t = 2tramp, where ΦSt,k = ζ2k+ϕS,k is the Stückelberg

phase and ζ2k =
∫ tc2
tc1

dtẼk(t)/~ is the dynamical phase
factor accumulated during passage between the two
crossings of the gap-closing points [37, 67, 69]. Since the
excitations occur near k ∼ 0 where E±1,k band approxi-
mately corresponds to spin |±〉 (along x-direction), P ex

k is
directly related to changes in the SRMD δnk± measured
along the pseudospin x-direction. Furthermore, within
these approximations, |dẼ0(t)/dt|tc(1,2) = ΩRf/(2tramp),
and it can be shown that P ex

k is a function of k
√
tramp

only. Thus, the integrated change of the SRMD δñ± =∫
dkδnk± displays KZ scaling ∼ √tramp of defect density

for a system dynamically evolved through the TPT. We
now show that these properties persist even when the
self-consistency conditions for ∆(t) and µ(t) are imposed
and at non-zero T (see Fig. 2).

We solve for the dynamics of the single-particle density
matrix ρabk (t) = 〈Ψ†ak (t)Ψb

k(t)〉 self-consistently and at
finite initial temperature, where a, b denote the indices
of elements in Nambu basis (see page 2). The density
matrix obeys the equation of motion

i~∂tρk(t) = [HBdG,k(t), ρk(t)], (9)

subject to the self-consistency conditions (see SM [69] for
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the derivation)

∆(t) =
g

4

∫
dkTr[ρk(t)τx],

µ(t) =
g

4∆(t)

∫
dkTr [ρk(t)Λk(t)] , (10)

where Λk(t) = (ξk + αkσz) τx −∆(t)τz. Our system be-
gins in the thermal state

ρk(t) =
∑
n

Enk<0

fnkχnk(t)χ†nk(t)+(1−fnk)χ̃n,−k(t)χ̃†n,−k(t),

where fnk = [exp(Enk(0)/kBT ) + 1]−1 is the Fermi func-
tion of the initial Hamiltonian, and kB is Boltzmann’s
constant. The wavefunction χnk(t) with its particle-hole
conjugate χ̃nk(t) = τyσyχ

∗
−n−k(t) begin as eigenfunc-

tions of the initial Hamiltonian and evolve according to
i~∂tχnk(t) = HBdG,k(t)χnk(t). Figure 1(a) shows the
resulting time profiles of the pairing potential obtained
from solving the td-BdGE (see SM [69] for the time de-
pendence of all parameters and remarks on the numerical
simulation).

We numerically solved the td-BdGE
for the change in the SRMD δnk± =
Tr {[ρk(2tramp)− ρk(0)] [(1 + τz) (1± σx)]} /4. Figure 2
shows that δnk− still exhibits Stückelberg oscillations
even with inclusion of the self-consistency conditions and
at T > 0. Furthermore, for tramp � ~/∆f , we still see
δnk± ∼ k

√
tramp (see SM [69] for explicit demonstration

of the scaling) and the integrated change in SRMD
δñ± =

∫
dkδnk± therefore scales with

√
tramp, thus

showing the robustness of such interference phenomenon
in the present system. We verified that these features

appear only if ΩRf > 2
√

∆2
f + µ2

f , where the ramp takes

the system through the TPT; thus both the KZ scaling
and the presence of Stückelberg oscillations mark the
TPT. In our calculation, we ignored the effect of phase
fluctuation as this effect can be suppressed by coupling
an array of 1D SOCFGs [71–74].

The parameters used for the plots in Fig. 2 are realistic
for 1D SOCFG experiments. For experiments with 40K,
the Raman laser beams, coupling the |↑〉 ≡ |9/2,−7/2〉
and |↓〉 ≡ |9/2,−9/2〉 states, have laser wavelength
λr = 768.86 nm giving the recoil energy Er = h × 8.445
kHz, and time tr = ~/Er ≈ 20 µs [57]. The single-
body decay time due to photons scattering from the Ra-
man lasers is about 60 ms [57] and the lifetime owing
to three-body recombination is about 200 ms [75]. We
consider SOCFGs with Fermi energy EF = Er. The 1D
Fermi gas criterion is satisfied when EF < ~ω⊥; for the
lateral trapping frequency ω⊥/2π = 5 × 104 Hz which
corresponds to characteristic harmonic oscillator length
d⊥ =

√
~/mω⊥ ≈ 1345a0 where a0 is the Bohr radius,

the parameters used in the calculation for the plots in
Fig. 2 correspond to linear density ñ ≈ 5 µm−1 and 1D
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FIG. 2. (Color online) Change in the SRMD δnk− for spin
|−〉 = (|↑〉 − |↓〉) /

√
2 as a function of tramp/tr and k/kr. For

large tramp, the width of the oscillation envelopes scale with
1/
√
tramp as shown by the red dashed line. δnk− is symmet-

ric with respect to k = 0; thus for illustration purpose, we
only plot δnk− for k ≥ 0. Note that δnk+ = −δnk−. Inset:
integrated change in SRMD δñ− =

∫
dkδnk− as a function of

tramp/tr exhibiting oscillations, with amplitude of the oscilla-
tions at large tramp scaling like

√
tramp as can be read off di-

rectly from the y axis. The plots are obtained by numerically
solving Eqs. (9) and (10) with initial conditions: µ(0) = 0,
∆(0) = 2Er and ΩR(0) = 0 for a temperature kBT = 0.1EF

(which is below the critical temperature Tc = 0.19TF [76, 77])
and ΩRf = 3.12Er.

interaction strength g1D ≈ −0.73Erλr (or 3D scattering
length a3D ≈ −2870a0 [64]). For these values, Fig. 2
shows that the Stückelberg oscillations and KZ scaling
behavior of the SRMD can be observed within the ex-
perimentally limiting single-body decay time (≈ 3000tr),
thus is feasible experimentally.

Our dip-in-dip-out protocol is quite general and can
be gainfully used for observing features related to quan-
tum phase transitions between long-lived and short-lived
phases of ultracold bosonic and fermionic atoms. In addi-
tion, it provides a route to escaping the heating problem
which is one of the major obstacles in measuring proper-
ties of such systems in or near their short-lived phases.
Moreover, our work also shows that such a protocol ap-
plied to ultracold atom systems, including the one we
analyzed in details, may provide us with test beds for
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observation of both KZ scaling [28–35] and Stückelberg
interference phenomenon [78–80].
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ful discussions. F. S. and J. D. S. acknowledge the sup-
port from LPS-CMTC, JQI-NSF-PFC and University of
Maryland startup grants. I. B. S. gratefully acknowl-
edges funding from the ARO’s Atomtronics-MURI, the
AFOSR’s quantum matter MURI, the NSF through the
JQI Physics Frontier Center, and NIST.

[1] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and
P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).

[2] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and
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