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We have explored isotropically jammed states of semi-2D granular materials through cyclic com-
pression. In each compression cycle, systems of either identical ellipses or bi-disperse disks, transition
between jammed and unjammed states. We determine the evolution of the average pressure, P, and
structure through consecutive jammed states. We observe a transition point, ¢,,, above which P
persists over many cycles; below ¢.,,, P relaxes slowly. The relaxation time scale associated with P
increases with packing fraction, while the relaxation time scale for collective particle motion remains
constant. The collective motion of the ellipses is hindered compared to disks, due to the rotational

constraints on elliptical particles.

Introduction: Particle systems near jamming exhibit
several signature features, including dynamical slowing
down, and heterogeneous dynamics|1, 2]. Systems of in-
terest include colloids, molecular glass formers, and gran-
ular materials[3-6]. Although all these systems can jam,
granular materials, which we consider here, have the ex-
perimental advantage of accessibility at the particle scale.
We use this feature to explore the dynamics of isotropi-
cally driven disordered materials near jamming.

Although these systems all share the certain common
features, several aspects distinguish studies of them, in-
cluding excitation mechanisms, and interparticle inter-
actions. In molecular and colloidal systems, temper-
ature provides homogeneous driving. In granular sys-
tems, temperature is an irrelevant variable, and driving
must be provided externally. In past granular studies,
driving came from vibration or tapping[7-9], by biax-
ial strain[10], or by shear[11-14]. Much of the work on
vibration and tapping has been summarized in Richard
et al.[7], and usually involve energy input on rapid time
scales and in ways that may not be isotropic and uniform.
Alonso-Maroquin and Herrmann[10] focused on the role
of friction at contacts for biaxial cyclic strain applied to
systems of irregular 2D polygons which always existed
in a jammed state (with nonzero stresses). Shear strain
can be applied on any time scale, but it is anisotropic,
and not necessarily homogeneous; e.g., shear failures are
often localized[15, 16]. The first point of the present ex-
periments is to understand the effect of jamming on gran-
ular systems when the driving mechanism is (relatively)
uniform, isotropic and on slow time scales.

Previous studies of spatio-temporal granular dynamics
near jamming have typically involved spherically sym-
metric particles: disks in 2D, spheres in 3D. In recent
experiments, we showed that tangential forces for fric-
tional particles significantly change stable states near
jamming[17], and help stabilize the granular network
(‘force chains’). If friction stabilize granular networks by
limiting rotation, it is natural to probe the possibly sim-
ilar role played by geometry, and this is the second ques-
tion that we address here. As we show below, although

both types of systems slow down under cyclic driving as
the density grows, the characteristic time scales for el-
lipses is significantly greater than for disks.

In the present experiments, we cyclically and isotrop-
ically compress/expand our granular systems by small
amounts, starting from a packing fraction ¢, just be-
low isotropic jamming, and compressing to a ¢ that is
above isotropic jamming. We measure the mean pressure,
P, and the collective dynamics in the most compressed
states for very large numbers of cycles. Under this proto-
col, the system may slowly find more compact configura-
tions. The time associated with this evolution becomes
large as ¢ for the compressed state grows, whereas the
time scale for the evolution of inhomogeneities of par-
ticle motion remains roughly constant. We emphasize
that the most compressed ¢ during a cycle is always
above isotropic jamming, e.g. ¢, ~ 0.84 for disks [18§]
and ¢, ~ 0.91 for ellipses[19].

Ezperiment: The experiments consisted of cyclic
isotropic compression of quasi-2D systems of bidisperse
disks and systems of identical ellipses with aspect ra-
tio ~ 2. A schematic of the setup is shown in Fig. 1.
The particles were confined in a square container, a biax,
where two of the confining walls were stationary, while
the other two were displaced using linear motors. The
distance between opposing pairs of walls has a spatial
resolution of ~ 107®m. The number of particles was
kept constant at 2400 in all the experiments. By chang-
ing the confining area of the biax [17], we changed the
packing fraction. The packing fractions, ¢, of the fully
compressed states were chosen above the isotropic jam-
ming point (point J). Here we refer to point J, as the
packing fraction of a system under isotropic compres-
sion, where the coordination number, Z, begins to grow
as a power law [19]. We have introduced point J in this
study, because any cyclic dynamics died out very quickly
if the system is below and far from isotropic jamming
point. The particles were photoelastic, which allowed us
to measure the local pressure acting on each particle. Be-
fore starting any compression cycle, the system was pre-
pared in a stress-free state. It was then quasi-statically
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FIG. 1. Schematics of the biax. a) Particles are confined
inside a square region. b) Side view. ¢,d) Time series of global
g? for two sets of cyclic compression of ellipses performed in
different packing fraction intervals of ¢) [0.868, 0.896], and d)
[0.906, 0.937]. The values of g® are normalized by g* at the
most compressed state of the first cycle (¢3). The system is
compressed by %1.6 in a series of much smaller quasi-static
steps. e) Coordination number, Z, vs. packing fraction. All
the particles (including rattlers) are counted in calculating Z.
The power law growth of Z at ¢ ~ 0.91 indicates the onset
of isotropic jamming transition. Here, n is the compression
cycle. n =1 corresponds to the transient response.

compressed via many small strain steps (about 0.016%)
for a typical total volumetric strain of 3.2%. Next, it was
quasi-statically expanded to its initial strain-free state.
This process was repeated for multiple cycles. Some ini-
tial runs were made for which the system was imaged at
every strain step for multiple compression steps and re-
laxations. For longer numbers of compression cycles (up
to ~ 1000 cycles), the system was strained as above, but
imaged only once at the maximum compressive strain for
each cycle. Before imaging at this strain extremum, the
system was allowed to relax. The imaging was carried
out using two synchronized digital cameras, one of which
recorded a polarized image which yielded the photoelas-
tic response of the system, while the other recorded a
normal (unpolarized) image. These two images enabled
us to measure the local stress on each particle, and to
track the particles, including their centers, and orienta-
tions (for ellipses).

The quasi-2D particles, either circular (disks) or el-
lipses, are machined from sheets of Vishay polymer PSM-
4 that are 0.635 cm thick. The semi-minor axis of the
ellipses is b ~ 0.25 cm, and the aspect ratio is 1.85. The
system of disks is bi-disperse, where the ratio of small-
to-large particles is kept at about 4.5 : 1. The radius
of small disks is ry ~ 0.38 c¢m, and the radius of larger
particles is r; ~ 0.44 cm. The particles rest on a hori-

zontal Plexiglas sheet (Fig. 1a) that has been lubricated
by a layer of fine powder. As shown in Fig. la, a circu-
larly polarized beam passes through the Plexiglas sheet
and the particles from below, and then through a beam
splitter placed over the setup. The beam splitter pro-
vides two identical images, one of which is viewed with-
out a polarizer by the horizontal camera, while the other,
passes through a crossed circular polarizer (with respect
to the bottom polarizer) and is viewed by the top cam-
era. The two cameras acquire images simultaneously. As
a result, one camera records the photoelastic response
of the system (polarized image), and the other camera
yields a direct image (normal image) of the particles for
tracking. We extracted the local stress acting on each
particle, which is encoded in the photoelastic response,
using an established empirical measure which we call 2.
This quantity is the gradient squared of the transmitted
photoelastic image intensity integrated over the pixels as-
sociated with each particle[12]. Before computing g2, we
first filter the photoelastic images, leaving only the green
channel of the original color image, which corresponds to
the optimum color response of the polarizers. The global
stress is found by averaging g® over all particles in each
image at a given strain.

Global stress response: Fig. 1(c,d) show time series of
the global stress of the ellipses for two packing fraction
intervals (i.e. minimum and maximum ¢’s), which are ob-
tained by incrementally compressing/expanding the sys-
tem over a number of cycles. In Fig. 1(c,d), the global
values of g2 are normalized by the global ¢2 at the most
compressed state of the first cycle (g2), which always cor-
responds to a density that is above the isotropic jamming
point. For the lower packing fraction, Fig. 1c, we see a
gradual drop of the maximum global g2. Although the
system is effectively “jammed” for part of each cycle,
after enough cycles, the stress relaxes to a measurably
lower value. We then track the evolution of these jammed
states by considering g2 for the most compressed states.
The corresponding time series of g2/g3, for several pack-
ing fractions of ellipses and disks (the most compressed
¢ is used as a label here), are shown in Fig. 3a. Here,
we emphasize the relaxation which occurs for states with
the most compressed packing fractions that are above
the isotropic jamming point. However, there is a largest
¢m such that we do not see significant particle or stress
relaxation over ~ 1000 cycles. For instance, the time
series of disks corresponding to ¢ = 0.868 in Fig. 3a per-
tains to a packing fraction which is lower than ¢disks,
even though the fully compressed density for this data
is above the isotropic jamming density of ¢ ~ 0.84. At
a higher packing fraction (i.e. ¢ = 0.883), the global g?
is persistent for many cycles, in the sense that there is
no overall change in the peak g2 with cycle number. We
conclude that there is a range of ¢ for which the very
small amount of spatial freedom, coupled with the com-
pressive/dilational driving is sufficient to allow structural



FIG. 2. Photoelastic images showing how the force network
evolves over 999 cycles of cyclic compression, applied to a
system of disks at ¢ = 0.863. The cycle number of images
from left to right are: 1, 500, and 999.

rearrangement.

In Fig. 2, we show photoelastic images of disks for the
maximum compressions of cycle 1, 500 and 999. Note
that the stress network of the most compressed states
changes spatially while the overall stress relaxes over cy-
cle number.

In order to quantify the long term stress relaxation
as in Fig. 3a, we fit the time series to the functional

form % = A(% + 1), which captures both the initial
relatively fast drop and the long-time saturation to a final
value, g2 /g3. Since, we have one more constraint on
parameters at t = 1, i.e. A(tgp + 1)* = 1, the functional
t+to )a.
t(to+1)
shown by solid lines in Fig. 3a. The large time value is

g%, /g8 = (1+t)~%, and it is straight forward to compute
the time #, o for Z—z to fall from 1.0 to (1 + ¢2,/g2)/2.
0

The fitted curves are

2
form reduces to g—z = (
0

From the parameters a and tg, obtained from the least
squares fits, we find g2 /g3 and ¢1 /5 as a function of den-
sity for both disks and ellipses, which we then show in
Fig. 3b,c. Although there is a fair bit of scatter, the
time scale ¢ /o grows strongly and g2,/92 jumps quickly
to 1.0, above a characteristic maximal packing fraction,
®m, where the system becomes effectively frozen; at least
on the time of these experiments, there is little evolution
of the global stress for either ellipses or disks for cyclic
compression carried out above this density. From g2 /g2
values, we estimate ¢,, ~ 0.88 for disks, and ¢,, ~ 0.93
for ellipses. For densities above ¢,,, the system main-
tains a global g2 and a memory of its previous state for
seemingly arbitrarily large numbers of compression cy-
cles. To the best of our knowledge, this work is the first
observation of such an effect.
stress evolution: Given that the
present systems can compact over long time scales, an
interesting question is whether the dynamical process of
gradual compaction is associated with identifiable, and
possibly heterogeneous, structural changes (i.e. in the
particle positions). In order to probe the effect of parti-
cle motion, we first consider the mobility of particles, de-
fined as the displacement of the particle for a given time
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FIG. 3. a) Time series of global g2 for representative systems
of disks, and ellipses under maximum compression. Colors
represent packing fractions at the most compressed state of
each cycle. b) Data for g2, determined from fit to g/g5 =
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delay, 7, relative to the mean displacement of all particles
(Here, time represents the number of compression cycles).
Fig. 4 shows data for two different time delays, 7 = 10,
and 7 = 1000 in a compression experiment on ellipses.
Particles with similar mobility are represented by similar
colors in Fig. 4. Specifically, the colors correspond to the
following fractional changes relative to all the particles:
red: 0.90 + 0.1; green: 0.70 £ 0.10; blue: 0.50 4 0.10;
and black: 0.2040.20. Although the spatial distribution
of most mobile particles change substantially over time,
the regions of comparable mobility form very large clus-
ters. This indicates heterogeneous dynamics both in time
and space. The dense structure of these clusters suggests
that there are at best small local rearrangements of the
particles.

As an alternative approach of quantifying this hetero-
geneous dynamics, we have studied the 4-point suscep-
tibility, x4(7), which indicates the extent of temporal
correlation of dynamics at any pair of spatial points[3].
xa(7) is defined as: y4(7) = N[< Q4(7)? > — <
Qs(1) >2]. We choose Q,(t) = + Zﬁl w(|ri () —r:(0)]),
with

w— { 1 if |7’1(t) — TZ(O)| <,
0 otherwise

N is the number of particles, 7;(¢) indicates the particle
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FIG. 4. Mobility of the particles (ellipses) in an arbitrary
time. The packing fraction of the system is ¢ = 0.932. The
time delay, 7, equals to a) 10 cycles, and b) 1000 cycles. The
various colors represent particles with similar mobility range.
Specifically, the colors correspond to the following fractional
changes relative to all the particles: red: 0.90 £ 0.1; green:
0.70 £ 0.10; blue: 0.50 £ 0.10; and black: 0.20 £ 0.20.
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FIG. 5. Qs(7) and x4(7) for a system of isotropically com-
pressed ellipses with (highest) packing fraction of ¢ = 0.916.
The unit of length scale, [, is the semi-minor axis of an ellipse.
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FIG. 6. 71 vs. packing fraction, ¢, for systems of ellipses and
disks. As seen, the average value of 71 is about an order of
magnitude larger for ellipses compared to disks.

positions at time ¢, for a length scale [. The averages are
taken over all the particles and over all starting times.
Qs(7), which is referred to as the self overlap order pa-
rameter, is a measure of particle mobility, and is quanti-
fied by a length scale I[3]. We plot Qs(7) and x4(7) vs. I,
in Fig. 5. As seen, @, varies from 1 to 0 as the time delay
7 increases. On the other hand, x4 has a maximal point
for each [, which basically characterizes a time delay, 7%,
by which the particles on average move more than the
length scale .

As seen in Fig. 5b, x4 is maximal for the characteristic
length scale [T ~ 0.093. We now take the characteristic
I for each packing fraction, and find the corresponding
maximal 7. The data are demonstrated in Fig. 6. We
note that similar structure for y, has been obtained un-

der much more energetic driving conditions by Dauchot
and coworkers[4]. There are several remarkable features
in these data. First, the typical length scales for [ are
only a fraction of a particle diameter; the particles are
largely confined. Second, the characteristic times 71 are
relatively insensitive to ¢, but are an order of magnitude
greater for ellipses than for disks.

These results beg the question, where should one look
to observe the stress relaxation demonstrated in Fig. 3a.
In fact, the distribution of forces demonstrated by pho-
toelastic response in Fig. 2, shows that although the par-
ticles may move very little, even a tiny bit of freedom
allows the force network to evolve and relax substantially
in time.

Conclusions: We have observed transient stress states
that occur for both systems of disks and ellipses that
are cyclically compressed by a modest amount above the
isotropic jamming point (point J). The global stress re-
laxes to a stationary value in the course of many com-
pression cycles. The time corresponding to stress relax-
ation grow substantially above a characteristic packing
fraction, ¢,, (ellipses: ¢,, = 0.93; disks: ¢, = 0.88). We
have sought to identify the origin of the stress relaxation.
To do so, we first characterized the structural changes by
computing relative mobilities and, x4. In particular, the
characteristic time scale, 71, varied rather little with ¢
whereas the stress relaxation showed a significant change
by increasing ¢. However, the analysis of x4 did identify
significantly longer times for 7! in the case of ellipses,
which we attribute to the fact that ellipses are substan-
tially confined by their inability to rotate. In fact, the
most clearly identifiable relaxation occurs in the force
network, even though there is minimal particle motion.
An interesting issue for future work concerns the extent
to which inter-particle friction plays a role in the relax-
ation process. For disks, friction may be more important
in stabilizing packings than for ellipses, where rotational
constraints do occur even without friction.
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