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When liquid-crystal elastomers are prepared without any alignment, disordered polydomain struc-
tures emerge as the materials are cooled into the nematic phase. These polydomain structures have
been attributed to quenched disorder in the cross-linked polymer network. As an alternative expla-
nation, we develop a theory for the dynamics of the isotropic-nematic transition in liquid-crystal
elastomers, and show that the dynamics can induce a polydomain structure with a characteristic
length scale, through a mechanism analogous to the Cahn-Hilliard equation for phase separation.

Liquid-crystal elastomers are remarkable materials
that combine the elastic properties of cross-linked poly-
mer networks with the anisotropy of liquid crystals [1].
Any distortion of the polymer network affects the orien-
tational order of the liquid crystal, and any change in the
magnitude or direction of liquid-crystal order influences
the shape of the polymer network. Hence, these elas-
tomers are useful for applications as actuators or shape-
changing materials.

For many applications, it is necessary to prepare mon-
odomain liquid-crystal elastomers. In practice, this can
be done by applying a mechanical load or other align-
ing field while crosslinking [2]. Surprisingly, elastomers
prepared without an aligning field do not form mon-
odomains. Rather, they form polydomain structures
with nematic order in local regions, which are macro-
scopically disordered. These polydomain structures have
been seen in many experiments, using a wide range of
techniques [3–7]. Indeed, a recent polarized light scat-
tering study shows that liquid-crystal elastomers evolve
toward a state of increasing disorder as the isotropic-
nematic transition proceeds, unless the disorder is sup-
pressed by a gradually increasing load [8].

One important issue in the theory of liquid-crystal
elastomers is how to understand the polydomain state.
Several theoretical studies have attributed this state to
quenched disorder in the polymer network, which can be
understood by analogy with spin glass theory [9–17]. Ef-
fects of quenched disorder have further been modeled and
visualized through numerical simulations [18–21]. More
macroscopic theories have shown that the resulting poly-
domain structure has profound consequences for the ma-
terial’s effective elasticity [22, 23].

The purpose of this paper is to suggest a different
mechanism for the origin of the polydomain state, not re-
lated to quenched disorder. We develop a theory for the
dynamics of the isotropic-nematic transition in liquid-
crystal elastomers, in which growing nematic order is cou-
pled to elastic strain. This theory is related to previous
work on the dynamics of the nematic phase in these ma-
terials [1, 24]. We explore the theory in two dimensions
(2D), using two models for dynamic evolution of nematic
order and strain. The theory shows that dynamics can
itself select a characteristic length scale for a disordered

polydomain structure, through a mechanism similar to
the Cahn-Hilliard equation for phase separation. In par-
ticular, the theory predicts formation of structures with
the form shown in Fig. 1. We suggest that this mecha-
nism may play a role in formation of polydomain liquid-
crystal elastomers, in addition to quenched disorder.

In the theory of 2D liquid-crystal elastomers, nematic
order is described by the tensor order parameter Qαβ(r),
and elastic distortion of the material by the displacement
vector u(r). In terms of displacement, the strain tensor
is εαβ = 1

2 [∂αuβ+∂βuα+(∂αuγ)(∂βuγ)]; we will consider
only the linear terms for small u. The free energy can be
expressed in terms of Qαβ and εαβ as

F =

∫
d2r

[
1

2
aQαβQαβ +

1

4
b(QαβQαβ)2

+
1

2
L(∂γQαβ)(∂γQαβ) +

1

2
λεααεββ

+ µεαβεαβ − V εαβQαβ
]
. (1)

Here, the first two terms are the Landau-de Gennes ex-
pansion for the free energy in powers of the order tensor.
The coefficient a = a′(T −T0) is assumed to vary linearly
with temperature, while b is a positive constant. The
third term is the Frank free energy for spatial variations
in the order tensor, assuming a single Frank coefficient L.
The fourth and fifth terms are the elastic free energy in
terms of the strain tensor, with Lamé coefficients λ and
µ. The final term is the coupling between nematic order
and strain, with coefficient V .

If there were no coupling between nematic order and
strain, V = 0, the system would have an isotropic-
nematic transition at a = 0, corresponding to temper-
ature T0. With coupling V 6= 0, the transition is shifted
upward to a = V 2/(2µ), corresponding to the higher tem-
perature TIN = T0+V 2/(2µa′). Above that temperature,
the state of minimum free energy is uniformly isotropic,
with Qαβ = 0 and εαβ = 0. Below that temperature,
at a = V 2/(2µ) − δa, the state of minimum free energy
becomes uniformly nematic, with alignment along a ran-
domly selected director n̂. In this state, the order ten-
sor is Qαβ = S(2nαnβ − δαβ), where the magnitude of

nematic order is S =
√
δa/(2b). This state extends uni-
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FIG. 1. Visualization of liquid-crystal elastomer structures
calculated here. The orientation and eccentricity of ellipses
represents local nematic order (on a coarse-grained length
scale much larger than individual mesogens). (a) Single wave
in nematic order and displacement. (b) Superposition of two
perpendicular waves, forming a square lattice. (c) Superposi-
tion of three waves with random directions, amplitudes, and
phases.

formly along the director, with strain εαβ = [V/(2µ)]Qαβ .

Now suppose we begin in the isotropic phase, and
rapidly cool to a temperature slightly below TIN. At this
low temperature, nematic order and strain both begin to
grow dynamically. We ask: Does the dynamic process
lead to the state of minimum free energy, with uniform
Qαβ and εαβ? Alternatively, does it lead to a different,
nonuniform state?

To answer this question, we develop a model for the
dynamics of the phase transition. We actually consider
two models, first simple linear drag and then more real-
istic viscous flow. In both models, we describe four cou-

pled degrees of freedom: Qxx(r, t), Qxy(r, t), ux(r, t),
and uy(r, t). The remaining components of Qαβ(r, t)
are fixed because it is a symmetric, traceless tensor, and
εαβ(r, t) can be derived from u(r, t). We cannot take the
strain tensor components as our fundamental degrees of
freedom because they are constrained by elastic compat-
ibility; they must all be derivable from the same u(r, t).

In the simplest model of overdamped dynamics with
linear drag, the rate of change for each degree of freedom
is linearly proportional to the force acting on it. Hence,
the equations of motion are

∂Qxx
∂t

= −ΓQ
δF

δQxx
,

∂Qxy
∂t

= −ΓQ
δF

δQxy
,

∂ux
∂t

= −Γu
δF

δux
,

∂uy
∂t

= −Γu
δF

δuy
, (2)

where ΓQ and Γu are mobility coefficients. To calculate
the forces on the right side of those equations, we sub-
stitute the definition of the strain tensor into the free
energy (1), and take functional derivatives with respect
to Qαβ and uα. We then linearize the equations, assum-
ing that Qαβ and uα are both small in early stages of
nematic ordering. The equations then become

∂Qxx
∂t

= ΓQ
[
−2aQxx + 2L∇2Qxx + V (∂xux − ∂yuy)

]
,

∂Qxy
∂t

= ΓQ
[
−2aQxy + 2L∇2Qxy + V (∂xuy + ∂yux)

]
,

∂ux
∂t

= Γu
[
(λ+ µ)∂x∇ · u + µ∇2ux − V (∇ ·Q)x

]
,

∂uy
∂t

= Γu
[
(λ+ µ)∂y∇ · u + µ∇2uy − V (∇ ·Q)y

]
.

(3)

To simplify this system of equations, we Fourier trans-
form from position r to wavevector k, then write the
equations in the matrix form

∂

∂t


Qxx(k, t)
Qxy(k, t)
ux(k, t)
uy(k, t)

 = −M(k)


Qxx(k, t)
Qxy(k, t)
ux(k, t)
uy(k, t)

 , (4)

where M(k) is a 4× 4 matrix. This matrix equation re-
sembles the Cahn-Hilliard equation for phase separation
of a binary fluid. At each k, the matrix M(k) has four
eigenmodes i, which either grow or decay exponentially
as e−Λi(k)t, where Λi(k) is the corresponding eigenvalue
ofM(k). Note that Λi(k) < 0 corresponds to exponential
growth, while Λi(k) > 0 corresponds to exponential de-
cay. We must determine what grows most rapidly: which
eigenmode at which wavevector?

To identify the fastest-growing mode, we choose coor-
dinates such that k is along the x-axis. The matrix then
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FIG. 2. Sample plot of the eigenvalues Λ±(k) in the linear
drag model of dynamics, with parameters a = 0.1 and L =
µ = V = ΓQ = Γu = 1. The largest negative eigenvalue
corresponds to the fastest-growing mode, which occurs at a
dynamically selected wavevector.

simplifies to

M(k) = (5)
2ΓQ(a+ Lk2) 0 −iΓQV k 0

0 2ΓQ(a+ Lk2) 0 −iΓQV k
iΓuV k 0 Γu(λ+ 2µ)k2 0

0 iΓuV k 0 Γuµk
2

 .

We now take the limit of an incompressible material, with
λ→∞. In this limit, ux has a high energy cost, so that
it decays rapidly, and hence we eliminate it from consid-
eration. In that case, Qxx is not coupled to any other
degrees of freedom, so it is an eigenmode by itself, with
eigenvalue 2ΓQ(a + Lk2

x). If the system is at a temper-
ature slightly below the isotropic-nematic transition, we
must have 0 < a < V 2/(2µ). In that temperature range,
this eigenvalue is positive, so that Qxx decays exponen-
tially. Hence, we also eliminate it from consideration in
the search for the fastest-growing mode.

The remaining two modes are linear combinations of
Qxy and uy, with eigenvalues

Λ±(k) =ΓQ(a+ Lk2) + 1
2Γuµk

2 (6)

±
√[

ΓQ(a+ Lk2)− 1
2Γuµk

2
]2

+ ΓQΓuV 2k2

Figure 2 shows a sample plot of these two eigenval-
ues as functions of k. The eigenvalue Λ+(k) begins
at 2ΓQa when k = 0, then increases with increasing
k. For temperatures just below the isotropic-nematic
transition, with 0 < a < V 2/(2µ), it is always posi-
tive and hence represents a decaying mode. By con-
trast, Λ−(k) begins at 0 when k = 0, then decreases
into negative values over the range 0 < k <

√
δa/L,

where δa = V 2/(2µ) − a, and eventually returns to
positive values for larger k. Over the range in which
it is negative, it represents an exponentially growing

mode. To find the fastest-growing wavevector, we min-
imize Λ−(k) over k. For temperatures just below the
isotropic-nematic transition, for small δa, this wavevec-
tor is kfastest ≈

√
δa/(2L), and the corresponding growth

rate is |Λ−(kfastest)| ≈ Γuµ
2δa2/(2LV 2).

We emphasize that this wavevector is selected through
a dynamic mechanism. It is not the minimum of the free
energy (which is a state of uniform nematic order and
strain). Moreover, it only occurs because of the coupling
V between nematic order and strain in a liquid-crystal
elastomer. If these variables were uncoupled (V = 0),
the matrix M would be diagonal, the isotropic-nematic
transition would occur at a = 0, and the fastest-growing
mode below that transition would be k = 0.

To characterize the fastest-growing mode, we calculate
the eigenvector of M corresponding to eigenvalue Λ− at
wavevector kfastest. This eigenvector represents waves in
both Qxy and uy (with our assumption that the wavevec-
tor is in the x-direction), and these waves are 90◦ out of
phase. Figure 1(a) shows a sample visualization of the
structure with a single Fourier mode. It has alternat-
ing stripes with the director oriented at ±45◦ from the
wavevector, accompanied by displacement perpendicular
to the wavevector.

In general, a liquid-crystal elastomer will not have only
one Fourier mode. Rather, it can include modes with
wavevectors of magnitude kfastest in multiple directions.
To find a mode in an arbitrary direction, we rotate the
wavevector, and make a corresponding rotation of Qαβ
and u. We then add up the Fourier modes to find the
structure. Figure 1(b) shows an example with two per-
pendicular waves of equal amplitude, leading to a square
lattice in the nematic order and the displacement. Fig-
ure 1(c) shows a more realistic example with a superposi-
tion of three waves with random directions, amplitudes,
and phases.

The structures in Fig. 1 are similar to structures com-
monly observed in experiments and simulations on active
nematic liquid crystals [25]. This similarity is reason-
able, because both systems are controlled by couplings
between orientational order and extension of the mate-
rial.

The growth of nematic order in a liquid-crystal elas-
tomer can be described by the dynamic correlation func-
tion

C(|r − r′|, t) = 〈cos 2[θ(r)− θ(r′)]〉t
= 〈Qxx(r, t)Qxx(r′, t) +Qxy(r, t)Qxy(r′, t)〉

=
∑
k

eik·(r−r
′)
〈
|Qxx(k, t)|2 + |Qxy(k, t)|2

〉
. (7)

This sum is dominated by the fastest-growing mode at
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wavevectors with magnitude kfastest, and hence

C(|r − r′|, t) ∝
∫ 2π

0

dφ

2π
eikfastest|r−r

′| cosφe2|Λ−(kfastest)|t

∝ J0(kfastest|r − r′|)e2|Λ−(kfastest)|t. (8)

Thus, in the early stages of growth, the correlation func-
tion has the form of Bessel function J0(kfastest|r − r′|),
with an exponentially increasing magnitude. In later
stages of growth, the approximation of small nematic
order ceases to apply, and other types of modeling are
needed. Even so, the length scale of 1/kfastest is estab-
lished from the early stages.

The dynamic model presented above has a limitation:
It assumes that both Qαβ(r, t) and u(r, t) have over-
damped dynamics, with drag forces linearly proportional
to the rate of change of these quantities. This assump-
tion is appropriate for dynamics on a substrate, where
the dissipation is caused by drag against the substrate.
However, if there is no substrate, it is reasonable to gen-
eralize the dynamics in two ways: by considering inertia
for the displacement and by considering viscous dissipa-
tion rather than drag against a substrate.

For this generalization, we use the equations of motion

ρ
∂2uα
∂t2

=− δD

δu̇α
− δF

δuα
,

0 =− δD

δQ̇αβ
− δF

δQαβ
. (9)

Here ρ is the mass density, which gives inertia for u; there
is no inertia for Qαβ . Also, D is the Rayleigh dissipation
function, which can be written as

D =

∫
d2r

[
ηAαβAαβ +

1

2
γ1BαβBαβ + γ2AαβBαβ

]
(10)

in terms of the two modes that dissipate energy: Aαβ =
1
2 (∂αu̇β + ∂β u̇α) is the rate of shear flow, and Bαβ =

Q̇αβ − ωz(εδαQδβ + εδβQδα) is the rotation rate of ne-
matic order relative to rotational flow of the material,
given by ωz = 1

2εµν∂µu̇ν . In these expressions, η is the
viscosity, γ1 is the rotational viscosity, and γ2 is a dissi-
pative coupling coefficient.

We combine these expressions to derive the coupled
equations of motion for Qxx, Qxy, ux, and uy, and lin-
earize the equations assuming these variables are small in
the early stages of nematic ordering. We then follow the
same steps as in the previous calculation: Fourier trans-
form from r to k, choose coordinates such that k is along
the x-axis, eliminate ux by the constraint of incompress-
ibility, and eliminate Qxx because it is an independent,
exponentially decaying mode. We are left with a matrix

equation for Qxy(k, t) and uy(k, t),(
0 0
0 ρ

)(
Q̈xy
üy

)
=−

(
4γ1 iγ2k
−iγ2k ηk2

)(
Q̇xy
u̇y

)
(11)

−
(

2(a+ Lk2) −iV k
iV k µk2

)(
Qxy
uy

)
.

Next we Fourier transform from time t to frequency ω,
and obtain(

2(a+ Lk2)− 4iγ1ω −iV k + γ2ωk
iV k − γ2ωk µk2 − iηωk2 − ρω2

)(
Qxy
uy

)
= 0.

(12)
In this matrix equation, there are two couplings be-

tween Qxy and uy: the elastic coupling V and the dis-
sipative coupling γ2. For simplicity, we set γ2 = 0 and
consider only the elastic coupling.

The matrix equation only allows nontrivial Qxy and uy
if the determinant of the matrix is zero. Hence, we set the
determinant to zero and solve for the allowed frequencies
ω. Because the determinant is a cubic function of ω, there
are three solutions. Expanding to first order in 1/ρ, the
solutions are

ω0(k) = − i(a+ Lk2)

2γ1
+

iγ1V
2k2

ρ(a+ Lk2)2
, (13)

ω±(k) = ±k

√
µ

ρ
− V 2

2ρ(a+ Lk2)
− ik2

2ρ

[
η +

γ1V
2

(a+ Lk2)2

]
.

Here, a real part of ω represents oscillation, a negative
imaginary part represents exponential decay, and a pos-
itive imaginary part represents exponential growth.

The solution ω0(k) is a purely damped mode. Whether
the system is in the isotropic phase, a > V 2/(2µ), or
slightly in the nematic phase, 0 < a < V 2/(2µ), this
mode decays exponentially.

The modes ω±(k) depend on whether system is in
the isotropic or nematic phase. In the isotropic phase,
a > V 2/(2µ), these modes are damped sound waves, with
both oscillation and exponential decay. By comparison,
when the system is cooled slightly into the nematic phase,
0 < a < V 2/(2µ), these modes change into pure expo-
nential growth or decay. One of the modes has a negative
imaginary part for all k, corresponding to decay, but the
other mode has a positive imaginary part for a range of
k, corresponding to growth.

Figure 3 shows a sample plot of the mode structure
in the nematic phase. We can see that the ω0(k) and
ω−(k) modes are decaying for all k, but the ω+(k) mode
is growing for a range of k. In this respect, it resem-
bles the growing mode in the linear drag model of dy-
namics, shown in Fig. 2. In the limit of high ρ, the
range of exponential growth is 0 < k <

√
δa/L, and

the fastest-growing wavevector is kfastest ≈
√
δa/(2L),

where δa = V 2/(2µ)− a. These results are equivalent to
corresponding results for the linear drag model.
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FIG. 3. Sample plot of the mode structure in the generalized
model of dynamics, with inertia and viscosity. Parameters
are a = 0.1, L = µ = V = η = 1, γ1 = 0.25, and ρ = 20. The
quantity −Im[ω(k)] is the exponential decay rate, equivalent
to Λ±(k) in Fig. 2. The largest positive value of Im[ω(k)]
corresponds to the fastest-growing mode.

Hence, the generalized model of dynamics (with inertia
and viscosity) leads to the same conclusion as the linear
drag model: The dynamic mechanism of the isotropic-
nematic transition selects a fastest-growing wavevector.
This fastest-growing wavevector is not the minimum of
the free energy, and it only occurs because of the cou-
pling between nematic order and strain. We expect mod-
ulations with this wavevector to grow in liquid-crystal
elastomers cooled below the isotropic-nematic transition,
leading to structures with the form shown in Fig. 1.

To be sure, both models of dynamics presented here
apply only to early stages of growth of nematic order.
In later stages, as nematic order becomes more estab-
lished, we cannot assume that Qαβ(r, t) and u(r, t) are
small. In that case, our linearization of the equations of
motion breaks down, and the dynamics must be stud-
ied through other techniques, such as numerical simula-
tion. Hence, we cannot be sure whether the polydomain
structure will persist into longer time, or will eventually
coarsen into a uniform structure. In the late stages of dy-
namics, pre-existing quenched disorder may lock in the
polydomain structure at the length scale given by dynam-
ics, and prevent it from coarsening away. Alternatively,
the dynamically induced polydomain structure may be
fixed by the cross-linking process, so that it provides a
source of quenched disorder for future processes in the
elastomer.

Our theory can be tested experimentally by investi-
gating how the polydomain structure depends on cooling
rate. The theory predicts that coarsening farther below
the equilibrium isotropic-nematic transition temperature
gives a higher wavevector kfastest. Hence, a higher cool-
ing rate should lead to a smaller polydomain length scale.
The theory might also be tested by imaging the polydo-

main structure; we expect a structure characterized by
bend stripes as in Fig. 1.

In conclusion, we have shown that dynamic evolution
of nematic order can induce a polydomain state with
a characteristic length scale, in the early stages of the
isotropic-nematic transition. This mechanism should be
considered, along with quenched disorder, in studies of
polydomain liquid-crystal elastomers.

We thank D. R. Nelson and M. Y. Pevnyi for helpful
discussions. This work was supported by NSF Grant
DMR-1409658.
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