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We introduce the numerical linked cluster (NLC) expansion as a controlled numerical tool for
the study of the many-body localization (MBL) transition in a disordered system with continuous
non-perturbative disorder. Our approach works directly in the thermodynamic limit, in any spatial
dimension, and does not rely on any finite size scaling procedure. We study the onset of many-body
delocalization through the breakdown of area-law entanglement in a generic many-body eigenstate.
By looking for initial signs of an instability of the localized phase, we obtain a value for the critical
disorder, which we believe should be a lower bound for the true value, that is higher than current
best estimates from finite size studies. This implies that most current methods tend to overestimate
the extent of the localized phase due to finite size effects making the localized phase appear stable
at small length scales. We also study the mobility edge in these systems as a function of energy
density, and find that our conclusion is the same at all examined energies.

PACS numbers:

Introduction— The eigenstate thermalization hypoth-
esis (ETH) is a powerful statement relating observables
of the high energy eigenstates of a quantum many-body
system with their thermal expectation values [1, 2]. How-
ever, this principle can be violated in certain systems
with strong enough disorder, where even the high energy
eigenstates possess only local entanglement [3, 4]. An-
derson localization is a one-body example of this. An
area of key interest is how far this localization persists
in a many-body state in presence of interactions [5]. At
what point are interactions strong enough that the local-
ization is destroyed and the system obeys ETH? This
is the problem of many-body localization (MBL) transi-
tion, which is a topic of active research both theoretically
and experimentally [6–31].

The surge of interest in many-body localized systems
has motivated many numerical studies. Most studies
have focused on exact diagonalization or Lanczos meth-
ods which are able to address both sides of the tran-
sition in small systems [32–45]. However, since much
about this phase transition is still not well understood,
extension of finite size results to the thermodynamic limit
can prove difficult. We would like to examine this phase
transition using expansion methods, which provide an
alternate way of addressing the thermodynamic limit.
While standard perturbative series expansions are very
powerful[46–48], they suffer from small energy denomi-
nators in models with continuous non-perturbative disor-
der. Thus, we turn to the numerical linked cluster (NLC)
expansion [49–51], which does not suffer from this prob-
lem of small energy denominators.

In this paper, we provide evidence that for a prototypi-
cal model of MBL, approaching the critical disorder from
the localized side, the localized phase actually becomes
unstable only at increasingly long length scales inacces-
sible to most numerical techniques. This implies that
finite size numerical studies on the MBL transition tend

to overestimate the extent of the localized phase.
Model— The system we study explicitly is the spin-1/2

Heisenberg Hamiltonian with random fields along the z
direction,

H =
∑

i

hiS
z
i +

∑

〈i,j〉

~Si · ~Sj , (1)

on the 1d chain, where the sum 〈i, j〉 is over adjacent
pairs. The random field is picked from a uniform distri-
bution hi ∈ [−h, h]. This is one of the simplest models to
study many-body localization on, and has been studied
numerically in great detail [32–35, 52, 53]. At low h, the
system is in a thermalizing phase obeying the ETH, while
at high h, the system is in the localized (MBL) phase.
To identify these different phases, we focus on the en-

tanglement properties of the eigenstates. The typical
measure for entanglement in a pure state bipartitioned
into two parts A and B is the von Neumann entropy,
defined for some state |Ψ〉 as

s(|Ψ〉) = −Tr(ρA ln ρA, ) (2)

where ρA = TrB |Ψ〉 〈Ψ| is the reduced density matrix,
obtained by tracing over all external degrees of freedom
from the density matrix.
A typical eigenstate in an ETH obeying system will

exhibit thermal volume law entanglement. The entangle-
ment entropy will approach the classical thermal entropy
(required by ETH) and scale with the volume of the re-
gions A and B. In the localized phase, the eigenstates
will instead obey an area-law, scaling with the area be-
tween A and B. This can be understood by regarding
them as simultaneous eigenstates of many local opera-
tors [3]: only due to mixing contained in operators near
the boundary will one get contributions to the entangle-
ment, which therefore grows with the area of the bipar-
titioning.
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Numerical Linked Cluster Expansions— NLC is simi-
lar to perturbative series expansions in that interactions
within clusters of increasing sizes must be considered,
but rather than perturbatively treating each interaction
within a cluster, we solve them numerically, typically by
exact diagonalization. Our treatment of disorder in NLC
is different from usual [51, 54], allowing us to deal with
continuous non-perturbative disorder. The procedure is
outlined briefly here.

Let N be the order to which we wish to do the calcula-
tion. The order of the calculation defined as the number
of spins in the largest cluster considered. We identify a
finite size region of the infinite system to work with. For
the chain, this is simply a 2(N − 1) length chain, with a
bipartitioning cut in the middle. Each of the sites i is as-
signed a field hi, which is held fixed until the calculation
is complete. The reason for this choice of system size is
so that the results remain correct for the infinite system,
to the desired order, as explained later.

We define a cluster c to be a set of sites. A Hamiltonian
Hc can be obtained considering only the spins in c, and
diagonalized numerically to obtain the eigenstates {|αc〉}
with eigenvalues {ǫcα} labeled by α. Our quantity of in-
terest, the eigenstate averaged entanglement entropy, can
then be calculated as

S(c) =
∑

α

e−βǫc
α

Z
s(|αc〉), (3)

where Z =
∑

α e−βǫc
α is the normalization factor and

β = 1/T is the inverse temperature.

The entropy for the infinite lattice L can be expressed
as a sum over the weight S̃(c) of all clusters c that can be

embedded in the lattice: S(L) =
∑

c S̃(c). The weight
of a cluster is then defined recursively by the principle of
inclusion and exclusion:[49]

S̃(c) = S(c)−
∑

c′⊂c

S̃(c′). (4)

One can show that only connected clusters which cross
the boundary can have a nonzero weight. First, if a
cluster does not cross the boundary there can obvi-
ously be no entanglement in it or its subclusters, so the
weight is trivially zero. Second, proving that only con-
nected clusters can contribute simply amounts to prov-
ing that S obeys the linked cluster property, that is, for
a cluster with two disconnected components c1 and c2,
S(c1 ∪ c2) = S(c1) + S(c2). This follows from the fact
that Hc1∪c2 = Hc1 ⊕Hc2. Thus, we must simply consider
connected clusters of up to size N that have sites on both
sides of the partition. Our finite size representation was
chosen to contain all the necessary clusters of the infinite
system up to order N . The count for the clusters cross-
ing the boundary scales with the area thus guaranteeing
an area-law as long as NLC converges.

Using this, we can obtain a series an whose sum gives
the total eigenstate averaged entanglement entropy per
unit area Sarea,

Sarea =
1

Lcut

N∑

n=0

an ; an =
∑

c,|c|=n

S̃(c), (5)

where Lcut is simply 1 for the chain. Finally, the entire

calculation must be repeated for different realizations of

{hi} to obtain a disorder averaged value for an. [57]
The NLC scheme used here is slightly different from

what has typically been used for random systems in the
past, where different embeddings of the same graph are
treated identically and one does not need a consistent
finite system [54–56]. The more standard scheme has
been applied to study MBL systems with discrete disor-
der [51], which allows one to perform disorder averaging
before subgraph subtraction. When there is continuous
disorder, partial disorder averaging over a finite number
of realizations means that the linked cluster property is
only approximate, and thus large errors will build up at
high orders. In our approach, the linked cluster prop-
erty is guaranteed and one is free to average over many
realizations of the system. This is a key aspect of our
calculation which allows us to treat disordered systems
with continuous non-perturbative randomness.
Does it converge?— We first examine T = ∞. If en-

tanglement satisfies a thermal volume-law, interpreting
n as a proxy length scale [50], we expect an to eventu-
ally saturate to the volume-law constant ln(2)/2 at high
enough n [58]. We should note that our model (Eq 1)
does not possess a strongly thermalizing regime, due to
the integrability at h = 0, and therefore we do not yet
see this saturation to the thermal value within our range
of n [59]. In the localized phase, the additional entangle-
ment due to the addition of one site far away from the
cut should become exponentially small with distance, so
we expect an to decay exponentially to 0 once n is larger
than some localization length ξ. We define the MBL
phase in our study to be one in which the sum of an
converges exponentially.
Fig 1 shows an for a range of h values. To estimate con-

vergence or divergence, a linear extrapolation to 1/n = 0
can be performed. If the extrapolation predicts a∞ ≥ 0,
we argue that this corresponds to a breakdown of area-
law. Although we expect an to eventually go to 0 expo-
nentially in the localized phase, this would only happen
when our cluster sizes are much greater than the local-
ization length scale. This can be more clearly shown by
examining the ratio of terms, which we will discuss next.
Note that the case of an area-law with logarithmic cor-
rections would correspond to one where an heads linearly
to 0, which we consider in this analysis the boundary be-
tween convergence and divergence.
Let us define the ratio of the (disorder averaged) se-

ries terms rn = an/an−1. In the MBL phase, we can say
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FIG. 1: The nth order area-law contribution an (Eq. 5) at T =
∞. Near hc, data has been averaged over more than 3× 105

disorder realizations of the chain, and error bars show the
standard error of the mean. Dashed lines are a demonstration
of the linear extrapolation to a∞ by fitting the last 4 terms
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FIG. 2: Plot of the ratios rn = an/an−1 versus 1/n. Also
shown is the line exp(−1/n), above which we argue the ex-
pansion cannot converge exponentially.

more about the overall trend of rn. Again interpreting
n as a proxy length scale, for large n, we expect an to
decrease exponentially with potentially power-law pref-
actors. The leading contributions at n ≫ ξ should be of
the form an = Cn−k exp(−n/ξ), where k is some posi-
tive number, ξ is the localization length, and C is some
arbitrary constant [3]. Therefore, in the large n limit,
discarding terms smaller than 1/n, we expect

rn = an/an−1 = (1− k/n) exp(−1/ξ). (6)

Therefore, plotting rn versus 1/n, rn should approach
r∞ = exp(−1/ξ) from below, with a slope of −k. How-
ever, near the transition ξ can become very large and we
do not actually see this behavior within our range of at-
tainable n. We can, however, predict whether this kind
of exponential convergence is possible given the behavior
of the series at finite n.

Fig 2 shows the behavior of rn for our range of h and
n. The trend seems to be for rn to increase steadily
with n (although eventually rn must approach 1 in the
delocalized phase). If the system is in the MBL phase and
the series is to converge exponentially, we expect that at
some n ≫ ξ, an will begin decreasing exponentially and
rn will begin heading towards r∞ with slope −k. Barring
bizarre behavior such as rn increasing to some high value
and then suddenly decreasing before finally increasing
again towards r∞, this places a restriction on what rn
can be when an begins its exponential decay. Because
the slope of the approach is negative or 0, rn ≤ r∞.
But also n ≫ ξ, which means this decay can only begin
occurring when

rn ≤ r∞ = exp(−1/ξ) < exp(−1/n). (7)

Therefore, once rn has increased above exp(−1/n), an
cannot converge exponentially. This is not a rigorous
claim, but should be valid as long as an behaves in a
regular manner. This clearly shows (in Fig 2) that the
series for h = 4.0 cannot converge exponentially, and thus
is not in the MBL phase. However, the series for h > 4.5
are still within this region, and thus diverge or converge.
Hence, our result should serve as a lower bound, with our
best estimate being at hc = 4.5 ± 0.1. Going to higher
order in NLC can further refine this value.
Discussion— A way of viewing our result [60] is that

we are seeing an instability to thermalization of an
almost-localized regime [61]. That is (in Fig 1), initially
an acts quite localized in that it is much smaller than the
thermal value and is getting smaller as n is increased, but
may start increasing at higher n, signaling the “onset” of
thermalization. This onset of thermalization moves to
higher n as h is increased, but goes beyond our range of
accessible n after h = 3.5. However, by looking in a sen-
sitive way for initial signs of an instability, we are able
to place a lower bound for hc at 4.5± 0.1.
To understand how our analysis is more sensitive to

this transition than other methods, let us focus on the
entanglement per unit volume Svol. Svol decreasing with
system size is often associated with area-law entangle-
ment and therefore localization [33]. In our study, Svol

for a system of size N would correspond to the quan-
tity Svol = (1/N)

∑N
n=0

an. So even if an had already
“turned up” and was increasing (clearly thermalizing),
Svol would not begin increasing until an had increased
above the mean of all the previous terms in the series.
Our analysis predicts this upturn, which itself would pre-
cede estimates from finite size systems using Svol.
Other methods, which are more focused on seeing the

full onset of thermalization, do not observe the transition
near our bound [32–35]. Results from Lanczos on systems
of up to 22 sites with finite size scaling show evidence for a
transition at hc ≈ 3.7 [33]. However, the scaling exponent
ξ ∼ (h− hc)

−ν obtained from finite size scaling strongly
violates the Harris-Chayes bound in 1d [62, 63], evidence
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FIG. 3: The phase diagram with (scaled) energy and disor-
der on the axes, identified by interpolation of the intercept
method (Fig 1) up to order 10. Error bars represent confi-
dence in our interpolation. Also shown is the hc obtained by
finite size scaling of Lanczos results from Ref [33] (error bars
not shown).

that perhaps they are still far from the true critical point.
This implies that finite size effects are significant, even in
the systems accessible to Lanczos, and some corrections
to the finite size scaling is needed. These effects cause
an overestimate of the stability of the MBL phase, which
actually becomes unstable to thermalization earlier only
at much longer length scales. Note that an interesting
alternate possibility is the existence of an intermediate
phase between the ETH and MBL phase, with neither
thermal nor area-law entanglement [64–66], which we do
not pursue further.

This onset of thermalization at high order is what
one would expect from a long lengthscale delocalization
mechanism. In studies of this transition by a renormal-
ization group approach, one also finds that the transi-
tion is driven by rare metallic inclusions [68, 69]. Near
the transition, these are rare enough that small systems
look localized, but actually become thermalizing at long
length scales.

The mobility edge— Finally, we can observe the tran-
sition at different energy windows by varying β = 1/T
in Eq. 3 of our NLC calculation, thus probing states at
a given energy defined by the thermal ensemble. Fol-
lowing the same arguments as at T = ∞, we can ob-
tain estimates for hc at a given temperature or en-
ergy density. Fig 3 shows our estimates for various β
values, with the scaled energy ǫ on the vertical axis:
ǫ = (E−Emin)/(Emax−Emin), where Emin and Emax are
the lowest and highest energies in the energy spectrum.
The shape of our estimates are very similar to those ob-
tained in previous numerical calculations [32, 33], along
with the slight asymmetry expected around ǫ = 1/2 [70].
As with the case at T = ∞, we find our estimates are
consistently higher than previous numerical calculations.

There is much debate on whether a mobility edge exists

in the thermodynamic limit. Numerical results suggest
the presence of such an edge [32, 33, 70], but there are
also arguments against it [67]. While our phase diagram
shows a similar shape as previous numerical studies, our
analysis gives a lower bound for hc, and hence does not
negate the claims of the absence of a mobility edge. If the
transition actually occurs at a single hc for all energies,
the fact that our estimates are lower away from the center
of the spectrum would indicate that much larger length
scales would be needed to observe delocalization and that
finite size effects would be much stronger in those regions.

Conclusions— In conclusion, we have studied the MBL
transition in the random field Heisenberg model using
NLC expansions. We focus on the breakdown of the area-
law of entanglement in the eigenstates of the Hamilto-
nian. Our approach works directly in the thermodynamic
limit and does not rely on any finite size scaling. By look-
ing for signs of instability in the MBL phase, we are able
to estimate a lower bound for the critical disorder in the
thermodynamic limit. At all energies examined, our hc

estimates are consistently higher than found by finite size
studies. This implies that numerical methods which look
for the full onset of thermalization tend to overestimate
the extent of the MBL phase, which actually becomes
unstable earlier but only at much longer length scales.
Near the transition, finite size effects are significant and
hence caution must be taken when relating to the infinite
system.

Our result can be readily verified by cold atoms ex-
periments, which are able to present very well character-
ized systems [28–31]. If the 1d random field Heisenberg
model is experimentally realized, measurements of the
critical disorder for large systems should lie above our
estimate. We may also extend our result for other simi-
lar models of the disorder driven MBL transition, where
delocalization also occurs over a long lengthscale [68, 69],
and suggest that the true critical point would be higher
than finite size scaling estimates from small systems.
Also of interest are quantum chaotic Wannier-Stark sys-
tems [71, 72], which are experimentally accessible and
possess a localization-delocalization transition in the ab-
sence of disorder.

We would like to thank David Huse for many valuable
discussions. This work is supported in part by NSF grant
number DMR-1306048.
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