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While an ordinary Fermi sea is perturbatively robust to interactions, the paradigmatic composite-
fermion (CF) Fermi sea arises as a non-perturbative consequence of emergent gauge fields in a system
where there was no Fermi sea to begin with. A mean-field picture suggests two Fermi seas, of
composite fermions made from electrons or holes in the lowest Landau level, which occupy different
areas away from half filling and thus appear to represent distinct states. We show that, in the
microscopic theory of composite fermions, these are dual descriptions of the same state for ν = 1/2
as well as ν = n/(2n± 1). We calculate the Fermi wave vector in a microscopic theory that satisfies
particle-hole symmetry in the lowest Landau level, and find our results to be generally consistent
with the experimental findings of Kamburov et al. [Phys. Rev. Lett. 113, 196801 (2014)]. Our
calculations suggest that the area of the CF Fermi sea slightly violates the Luttinger area rule.

PACS numbers: 73.43.-f

A fundamental property of a Landau Fermi liquid is
captured by Luttinger’s theorem[1], according to which
the volume occupied by the Fermi sea, appropriately de-
fined, remains proportional to the number of particles
even when the interaction is switched on, so long as no
phase boundary is crossed. A violation of this theorem
signifies non-Fermi liquid behavior, which has motivated
investigations[2–7] of its applicability for various strongly
correlated systems, such as high temperature supercon-
ductors. This article investigates the Luttinger theorem
for another nontrivial Fermi sea.

When two-dimensional electrons are subjected to a
strong magnetic field, they exhibit the phenomenon of
the fractional quantum Hall effect (FQHE)[8], which is
understood in terms of topological particles called com-
posite fermions[9–13]. Halperin, Lee and Read[11] and
Kalmeyer and Zhang [14] theoretically predicted that at
Landau level (LL) filling factor ν = 1/2, the external
magnetic field is canceled, in a mean field (MF) approx-
imation, by the emergent gauge field carried by compos-
ite fermions, and they form a Fermi sea. The compos-
ite fermion (CF) Fermi sea is special in the following
sense. Ordinarily, we begin with the perfect Fermi sea
of non-interacting fermions and then ask how interac-
tions degrade or destroy it. In contrast, interactions are
fully responsible for creating the CF Fermi sea (CFFS)
in a system of electrons confined to the lowest LL (LLL)
where, originally, there was no Fermi sea, and, in fact,
no kinetic energy. The very existence of the CFFS thus
is a manifestation of strong correlations. The essential
validity of the CFFS has been confirmed in extensive
detail in many experiments[15–23], and it also dovetails
with the prominently observed sequences of fractions at
ν = n/(2n± 1)[9].

Kamburov et al.[24] have recently made accurate mea-
surements of the CF Fermi wave vector through commen-
surability effects in the presence of a periodic modulation.

They have observed more commensurability oscillations
than before, and thus provided the most detailed confir-
mation of the CFFS state to date. Furthermore, the un-
precedented accuracy of their measurement has revealed
an intriguing puzzle. For electrons confined to the LLL,
one can take two exactly equivalent starting points: One
can define the problem in terms of either electrons at ν
or holes at 1− ν. One can then go ahead and composite
fermionize either electrons or holes to produce what we
will label eCFs or hCFs, which experience an effective
magnetic field given by B∗ = B−2ρφ0, where φ0 = hc/e
and ρ is the density of composite fermions. (All CF quan-
tities are marked by an asterisk.) For ν 6= 1/2 the eCFs
and hCFs have different densities, producing, in the MF
description, different Fermi wave vectors for the fully spin
polarized CFFS state:

MF for eCFFS : k∗F =
√

4πρe ↔ k∗F` =
√

2ν

MF for hCFFS : k∗F =
√

4πρh ↔ k∗F` =
√

2(1− ν)

where ` =
√
~c/eB is the magnetic length, and the elec-

tron and hole densities are given by ρe = ρν = ν/(2π`2)
and ρh = ρ1−ν = (1−ν)/(2π`2). The CFFS thus appears
to have a split personality. This raises many interesting
conceptual questions. At a given ν, do the eCFFS and
hCFFSs represent two distinct states, or are they dual
descriptions of the same state? If the former is true,
then which of these two, if either, occurs in real sys-
tems? If the latter is true, how does one reconcile their
seemingly incompatible consequences of the MF picture,
and how does one understand the violation of the Lut-
tinger theorem for at least one of the two descriptions? In
either case, what is the role of particle-hole (p-h) sym-
metry in the LLL? Finally, how do we understand the
remarkable finding of Kamburov et al.[24] that the mea-
sured value of the CF Fermi wave vector is consistent
with that expected from the smaller Fermi sea, namely
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k∗F` = min[
√

2ν,
√

2(1− ν)]?
These observations have motivated two striking the-

oretical proposals that lead to experimentally testable
predictions. Son has proposed[25] that viewing the com-
posite fermion as a Dirac fermion allows a p-h symmetric
description of the FQHE and the CFFS. Barkeshli, Mul-
ligen and Fisher [26] have taken the experimental ob-
servations to imply that the eCFFS and the hCFFS are
distinct states of matter and a spontaneous breakdown
of p-h symmetry within the LLL selects one of them.
Within the Chern-Simons (CS) formulation of composite
fermions[10, 11], the MF Fermi wave vector k∗MF

F ` is not
expected to change to all orders in a perturbative treat-
ment of the Coulomb and the gauge interactions, suggest-
ing that the eCFFS and hCFFS are perturbatively dis-
connected, i.e. are topologically distinct, for any ν 6= 1/2,
and, by extension, also for ν = 1/2. The CS formulation,
however, does not implement the LLL constraint (which
is satisfied by the actual experimental state to a high de-
gree), and hence does not satisfy the p-h symmetry, as
has been stressed elsewhere in the literature[25, 27].

We determine CFFS area using a different theoretical
formulation of the CF paradigm, namely the microscopic
wave functions of composite fermions[9, 12, 13, 28]. This
theory (i) is explicitly restricted to the LLL; (ii) satisfies
p-h symmetry; and (iii) does not assume, a priori, any
specific value for k∗F`. We show that k∗F` defined from
Friedel oscillations in the pair-correlation function has
the same value for states at ν and 1 − ν related by p-h
symmetry. We explicitly calculate k∗F` for filling factors
in the vicinity of ν = 1/2.

We define the Fermi wave vector through the Friedel
oscillations in the pair correlation function, for which we
take the form[29]

g(r) = 1 +A(r
√

4πρe)
−α sin(2k∗Fr + θ) (1)

where A, α, k∗F and θ are fitting parameters. We denote
the particle coordinates by either r j or zj = xj − iyj ,
and set ` = 1. This form is motivated by the observation
that for noninteracting fully-spin polarized fermions in
two dimensions at B = 0, the oscillatory part of g(r) for
large rkF is given by (4/πr3k3F) sin(2kFr). Let us consider
a wave function φν for a uniform density state at filling
factor ν. Its pair correlation function is given by

gν(r , r ′) = ρ−2ν 〈φν |Ψ̂†(r)Ψ̂†(r ′)Ψ̂(r ′)Ψ̂(r |φν〉 (2)

φν =
1

N !

∫ N∏
j=1

d2r jφν(r1, · · · rN )

N∏
k=1

Ψ̂†(rk)|0〉 (3)

where φν(r1, · · · rN ) is the real space wave function,
Ψ̂(r) =

∑∞
m=0 ηm(r)cm is the electron annihilation op-

erator in the LLL and Ψ̂†(r) is the corresponding elec-
tron creation operator, with the single particle LLL wave

function defined as ηm = (2π2mm!)−1/2zm exp[−|z|2/4].
We can similarly define the pair correlation function for
electrons at 1− ν, with

φ1−ν =
1

N !

∫ N∏
j=1

d2r jφ
∗
ν(r1, · · · rN )

N∏
k=1

Ψ̂(rk)|1〉 (4)

where |1〉 is the state with the LLL fully occupied. Sub-
stituting into the expression for the pair correlation func-
tion and noting 〈1|f(cm, c

†
m)|1〉 = 〈0|f(cm → c†m, c

†
m →

cm)|0〉 produces the relation

g1−ν(r , r ′) = ρ−21−ν〈φν |Ψ̂(r)Ψ̂(r ′)Ψ̂†(r ′)Ψ̂†(r)|φν〉 (5)

In terms of the LLL projected delta function[30, 31]

δ̄(r , r ′) =
1

2π
exp

[
−1

4
(|r − r ′|2 − zz′∗ + z′z∗)

]
(6)

which satisfies δ̄(r , r ′) = [δ̄(r ′, r)]∗, we have
{Ψ̂(r), Ψ̂†(r ′)} ≡ δ̄(r , r ′), 〈φν |Ψ̂†(r)Ψ̂(r ′)|φν〉 =
νδ̄(r ′, r), and 〈φν |Ψ̂(r)Ψ̂†(r ′)|φν〉 = (1 − ν)δ̄(r , r ′).
Straightforward algebra gives the relation (assuming
thermodynamic limit and translational invariance, and
setting r ′ = 0)

g1−ν(r) =
(1− 2ν)(1− e−r2/2) + ν2gν(r)

(1− ν)2
(7)

where we have assumed the same magnetic lengths for ν
and 1−ν. For r � 1, this reduces to g1−ν(r) = 1+(ν/(1−
ν))2(gν(r)−1). The important point is that an oscillatory
term sin(2k∗Fr) in gν implies identical oscillatory behavior
for g1−ν , indicating that the states at ν and 1 − ν have
the same k∗F`. The “exact” k∗F` is thus the same at ν
and 1− ν, and is independent of whether the problem is
formulated in terms of electrons or holes.

We next determine the value of k∗F` in a microscopic
calculation from the oscillations in g(r) following Refs. 29
and 32. Being an equal time correlation function, g(r)
can be evaluated from the knowledge of the microscopic
wave functions for the ground state in the vicinity of
ν = 1/2. We concentrate on the fractions ν = n/(2n±1)
which approach ν = 1/2 in the limit of sufficiently large
n. The microscopic Jain wave functions for these states
are given by[9]

Ψn/(2n±1) = PLLL

N∏
j<k=1

(zj − zk)2Φ±n (8)

where PLLL denotes LLL projection and Φn is the wave
function of n filled LLs, with Φ−n = [Φn]∗. At first it may
appear that the above mentioned dichotomy is present
also in the microscopic theory of composite fermion, as
we illustrate by considering the fraction ν = n+1

2n+1 . (Sim-
ilar considerations apply to ν = n/(2n + 1).) According
to the CF theory, there are two ways of constructing a
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FQHE state at this fraction: (i) The electron partner of
the ν∗ = n integer QHE (IQHE) of hCFs in positive B∗,
with wave function given by Cp−hPLLL

∏
j<k(zj−zk)2Φn

where Cp−h represents p-h transformation. (ii) The
ν∗ = n + 1 IQHE of eCFs in a negative B∗, with wave
function given by PLLL

∏
j<k(zj − zk)2[Φn+1]∗. A pri-

ori, these appear to represent two distinct FQHE states,
and one may ask which one applies to the real system.
However, explicit evaluations[33, 34] have demonstrated
the nontrivial result that these two descriptions represent
the same state. They predict identical quantum numbers
for the ground state and the excitations (see Supplemen-
tal Materials (SM) [35]), and there is an almost prefect
overlap between the two wave functions wherever it has
been evaluated (e.g. for the 10 particle 2/3 state, the two
wave functions have overlaps of 0.996 and 0.994 with the
exact Coulomb state[33]). We have evaluated the g(r)’s
of Ψ(n+1)/(2n+1) and Ψn/(2n+1) and found them to be
related by p-h symmetry to a very high accuracy (See
SM [35]). The wave functions Ψn/(2n±1) produce, in the
limit of n→∞, the same CFFS from either side, because
Φ(B∗ = 0) is real[36]. Further, Rezayi and Haldane[37]
have directly constructed the wave function for the CFFS
on a torus and found that, for N = 16 particles, it has has
an overlap of 0.9994 with its hole conjugate, and 0.9925
with the exact p-h symmetric Coulomb ground state[37].
The degree to which the microscopic wave functions of
the CF theory satisfy the p-h symmetry may seem sur-
prising, but is a byproduct of the fact that these are
excellent approximations of the exact Coulomb states in
the LLL which satisfy p-h symmetry exactly.

The understanding of FQHE at ν = (n + 1)/(2n + 1)
as ν∗ = n + 1 IQHE of eCFs in a negative B∗ be-
comes essential when we consider the spin degree of
freedom, because it is the only known way to explain
the non-fully spin-polarized FQHE states here, e.g. the
spin singlet state at ν = 2/3. (Recall that for spinful
states, p-h symmetry relates ν to 2 − ν.) An extensive
experimental[38–50] and theoretical[33, 34, 51–57] liter-
ature on spin phase transitions has validated the expla-
nation of the ν = (n + 1)/(2n + 1) as ν∗ = n + 1 IQHE
of eCFs.

The validity of Ψn/(2n±1) for the incompressible states
has been established by extensive numerical studies[12,
33, 36, 58–60]. We will make the assumption that
Ψn/(2n±1) remain valid to arbitrarily high n, i.e., that
the compressible region around ν = 1/2 consists of un-
resolved IQHE states of composite fermions. We stress
that we cannot rule out the possibility that the eCFFS
and hCFFS are in reality topologically distinct, as pro-
posed in Ref. 26, and a spontaneous breaking of the p-h
symmetry selects one of them. This would happen, for
example, if the half filled ground state were unstable to
CF pairing [61–64] and eCFFS and hCFFS are the normal
states of the topologically distinct Moore-Read Pfaffian
and anti-Pfaffian paired-CF states [65–68]. Nonetheless,

FIG. 1. (a) Pair correlation function g(r) as a function of r/`,
where r is the arc distance on the sphere. The projected wave
functions in Eq. 8 have been used for its evaluation. The solid
lines are fits using Eq. 1 for the initial oscillations. For clarity,
the curves (except for 5/11) have been shifted up or down by
multiples of 0.02. (b) The calculated thermodynamic values
of k∗F` as a function of ν. The mean-field values

√
2ν and√

2(1− ν) are also shown for reference.

the presently known facts do admit the possibility of a
p-h symmetric CFFS, and our aim here is to deduce its
properties, so experiments may distinguish between the
different proposals.

We have calculated the pair correlation function for
ν = n/(2n + 1) up to 7/15 using the Metropolis Monte
Carlo method. For technical reasons, we find it conve-
nient to use the standard spherical geometry[69]; see SM
for details[35]. The results extrapolated to the thermody-
namic limit apply to the planar geometry of the exper-
iments. The spherical analogs of the above wave func-
tions, as well as the details of LLL projection can be
found in the literature[12, 70, 71]. All wave functions
considered below have uniform density and are transla-
tionally invariant (i.e. have orbital angular momentum
L = 0 on the sphere). The g(r)’s for the largest sys-
tems in our study are shown in Fig. 1(a). For incom-
pressible systems the pair correlation function is expected
to decay in a gaussian manner in the limit of r → ∞,
but there is a range of intermediate r where it exhibits
well defined oscillations from which a Fermi wave vec-
tor can be extracted. In fitting g(r) to Eq. 1, we avoid
very small r (where short distance correlations are impor-
tant) and very large r (where curvature effects become
non-negligible). From the results for finite systems we
obtain the thermodynamic limits for the k∗F` (see [35]).
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FIG. 2. Same as in Fig. 1 but for the unprojected wave
functions Ψun

n/(2n±1). Also shown for reference is k∗MF
F ` =√

2ν corresponding to the Chern-Simons mean field theory
for eCFs.

We find that very large systems (N > 100) are needed
for a satisfactory thermodynamic extrapolation of k∗F`.
The thermodynamic limits are shown in Fig. 1(b). [We
have assumed exact p-h symmetry, which implies that
the k∗F` at ν = (n + 1)/(2n + 1) is the same as that at
ν = n/(2n + 1).] The range of k∗F` includes uncertainly
in the fits (estimated by linear and quadratic fitting in
1/N for g(r)) as well as uncertainty due to the curvature
of the spherical geometry (estimated by considering fits
with r chosen as the chord or the arc distance). For ref-
erence, Fig. 1(b) also shows the values k∗MF

F ` =
√

2ν and

k∗MF
F ` =

√
2(1− ν) as expected from a MF picture for

the eCFFS and hCFFS.

For ν = 1/2, we have estimated k∗F` by considering,
in the spherical geometry, filled shell CF systems at zero
effective flux[36] occurring at N = n2. For technical rea-
sons, we are not able to go to systems with N > 81
(which requires filling the 10th Landau-like level of com-
posite fermions, where the numerics become unstable).
We have therefore also studied the CFFS in the torus
geometry[37, 72, 73] where we can go up to N = 153,
and find that the results are consistent with our spheri-
cal results. Results in the torus geometry are presented
in [35].

For ν away from 1/2, our calculated k∗F` is close, but

not equal, to the smaller of
√

2ν and
√

2(1− ν). Both
from extrapolation of the results from the sequences
n/(2n ± 1) and from calculations directly at ν = 1/2,
our calculations suggest that the CFFS area at ν = 1/2

slightly deviates from the value expected from the Lut-
tinger rule.

The physics of the CFFS at ν = 3/2 is analogous to
that at ν = 1/2 once the B dependence of the density of
either eCFs or hCFs in the spin-reversed LL is accounted
for[23, 74]. Near ν = 1/4, both n/(4n+ 1) and n/(4n−
1) are understood only in terms of eCFs, and thus one
expects k∗F` ≈

√
2ν, as observed experimentally [24, 74]

and also in our calculations[35]. Analogous consideration
for the CFFS at ν = 3/4 gives k∗F` ≈

√
2(1− ν).

We next investigate how robust the CFFS area is to
LL mixing. LL mixing requires a formulation in terms
of electrons (rather than holes of the LLL), and the LLL
electronic wave functions in Eq. 8 can be used as a start-
ing point to address this issue[75]. A realistic treat-
ment of LL mixing is outside the scope of the current
study, but we have considered the “unprojected” Jain
wave functions Ψun

n/(2n±1) =
∏N
j<k=1(zj−zk)2Φ±n, which

contain some amplitude outside of the LLL [29, 76]. Even
though they do not give a realistic account of LL mix-
ing, it is likely that they are adiabatically connected to
the projected wave functions (as explicitly demonstrated
for ν = 2/5 [77]), and hence to the actual Coulomb
ground states. For these wave functions, the g(r)’s of
ν = n/(2n − 1) and ν = n/(2n + 1) are identical for a
given N when plotted in units of the sphere radius, which
in the thermodynamic limit implies the relation

(k∗unF `) n
2n−1

=

(
2n+ 1

2n− 1

)1/2

(k∗unF `) n
2n+1

(9)

The calculated values of k∗unF ` using the eCF description
(see SM for details) are shown in Fig. 2. Our calcula-
tions thus provide evidence that k∗F` depends on LL mix-
ing. Another approximate wave function with LL mixing
is the CS MF state ΨMF

n/(2n±1) =
∏N
j<k=1[(zj − zk)/|zj −

zk|]2Φ±n(B∗). Given that its g(r) coincides with that for
Φ±n(B∗), we get k∗MF

F =
√

4πρe, i.e., k∗MF
F ` =

√
2ν for

all ν = n/(2n ± 1). For the unprojected or the CS-MF
wave functions, k∗F` does not obey particle-hole symme-
try, as expected in the presence of LL mixing.

In summary, we have shown that, within the micro-
scopic theory of composite fermions, it is valid to consider
electron (or hole) based composite fermions for ν < 1/2
as well as ν > 1/2. We have calculated the CF Fermi
wave vector in the vicinity of ν = 1/2 and find that it
is closer, but not equal, to the smaller of

√
4πρe and√

4πρh. In terms of electron based composite fermions,
this implies that the Luttinger theorem is slightly (sub-
stantially) violated for ν < 1/2 (ν > 1/2). At ν = 1/2,
our results suggest, but do not conclusively demonstrate,
that the k∗F differs slightly (by a few percent) from the
value

√
4πρe predicted by the Luttinger area rule. We

also provide evidence that k∗F varies as a function of LL
mixing.

Note Added: Since the completion of this work, several
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other articles have appeared addressing the nature of the
CFFS and the role of p-h symmetry [78–82].
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Rev. B 91, 045109 (2015), URL http://link.aps.org/

doi/10.1103/PhysRevB.91.045109.
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