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A longitudinal magnetoresistance asymmetry (LMA) between positive versus negative magnetic
field is known to occur in both the extreme quantum limit and the classical Drude limit in samples
with non-uniform doping density. By analyzing the current stream-function in van der Pauw mea-
surement geometry, it is shown that the electron density gradient can be quantitatively deduced
from this LMA in the Drude regime. Results agree with gradients interpolated from local densi-
ties calibrated across an entire wafer, establishing a generalization of the van der Pauw method to
quantify density gradients.

PACS numbers: 73.43.-f, 72.20.My, 73.43.Qt

Experimental measurements of longitudinal magne-
toresistance Rxx in semiconductor quantum wells (QWs)
can show asymmetry with respect to positive and nega-
tive magnetic field B. At large fields and low tempera-
tures in the quantum Hall (QH) regime, larger Rxx peaks
appear for one sign of magnetic field, and smaller or van-
ishing Rxx peaks for the opposite field [1] obeying the
Onsager-Casimir relations [2–4]. However, the underly-
ing cause of the asymmetries remained unknown until
more recent work by Pan et al. [5] in the fractional QH
regime, whereby quantized Rxx maxima were explained
by assuming an electron density difference across the
sample. Motivated by this experiment, Ilan et al. [6]
introduced a stream-function [7] model for current flow
in the QH regime under an electron density gradient in
the high-B limit ρxx � ρxy, and were able to explain the
key features observed by Pan, where ρxx and ρxy are the
longitudinal and transverse resistivities, respectively.

Despite the relevance of the above work, the low-
magnetic field Drude limit, whereby resistivity compo-
nents ρxx ∼ ρxy are of the same order, has a much
broader practical scope than the restricted QH regime
considered above. The majority of semiconductor char-
acterizations are in this low-B limit, such as room tem-
perature characterizations of samples with any mobility,
and moderate-mobility magnetotransport of samples at
any temperature. The above analysis of Ilan et al. also
suffers from the significant drawback that it is not able to
deduce the two independent components of the density
gradient from a single sample. Yet density anisotropies
are important to characterize since spurious effects in QH
traces [1, 5] can result from wafer-scale density variations
inherent to epitaxial growth [8], and inaccurate estimates
of the activation energies of the QH regime are shown
to result from anisotropic current flow [9]. Thus there
remain significant challenges for magnetotransport char-
acterization of inhomogeneously doped samples.

In this paper, the longitudinal magnetoresistance
asymmetry (LMA) is comprehensively studied for an ar-
bitrarily oriented density gradient in the more broadly
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FIG. 1. Asymmetric longitudinal magnetoresistance Rxx =
R43,12 and Ryy = R32,41 of sample D4 in the QH regime at
(a) T = 50 mK, (b) 1.6 K, and in the Drude regime at (c) T
= 100 K. The curves for −B fields are magnified by 20 times
for (a) and (b) in order to see subtle features. Note how the
asymmetry exaggerates with decreasing temperature. Inset:
Sample layout for a square sample L = W .

relevant low-magnetic field Drude limit for the first time,
and a method to quantitatively measure both compo-
nents of the density gradient is developed and calibrated
against interpolated local densities of neighboring sam-
ples. Drastically asymmetric longitudinal resistance is
observed in van der Pauw (vdP) samples [15] in both
the QH and the Drude regime (Fig. 1). We find that
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upon entering the Drude regime at higher temperatures,
the LMA can be quantitatively explained with a model
that assumes a density gradient in a classical Drude con-
ductor. This LMA analysis deduces the magnitude and
direction of the density gradient ∇n as well as the lo-
cal resistivity ρ0 (B) from a consideration of 4-point re-
sistances at both positive and negative B-fields. Such
a technique promises to revolutionize magnetotransport
characterization, allowing one to estimate density gra-
dients with a simple extension of the vdP method [15].
We verify the validity and reproducibility of this LMA
method on square samples cleaved from a high-mobility
GaAs QW wafer. Both the angle and magnitude of the
density gradients from this method match those interpo-
lated from local electron density measurements.

Our experiments were carried out on a 2-inch wafer
hosting a 30 nm-wide GaAs QW, with an average elec-
tron density n̄ = 2.6 × 1011 cm−2 and mobility µ̄ =
6.6 × 106 cm2/V·s at T = 1 K. The wafer was grown
by molecular beam epitaxy in a Gen II Varian chamber
without any rotation during growth, leading to moderate
density gradients as large as 20%/cm caused by the asym-
metric positioning of the Ga, Al, and Si-dopant fluxes.
The wafer was diced into 4 × 4 mm2 square samples that
were each contacted with four indium dots on the corners
and four on the flats of each side, and then alloyed. Sam-
ples were measured in both a dilution refrigerator and
4He flow cryostat (T = 50 mK - 300 K) with standard
lock-in techniques.

Figure 1 shows the two longitudinal resistances Rxx =
R43,12 and Ryy = R32,41 of sample D4 measured at ±B-
fields at T = 50 mK, 1.6 K and 100 K. The notation
R43,12 means current is sent from contact 4 to 3, and
voltage is measured at contact 1 relative to 2 [15, 16]. Ac-
cording to the symmetry of the measurement, one would
expect a perfectly homogeneous sample to exhibit the
same longitudinal resistances Rxx and Ryy for +B and
−B-fields. However, at the lowest temperatures an ex-
treme anisotropy is observed in the QH Rxx and Ryy
traces (Fig. 1a), which decreases with increasing temper-
ature (Fig. 1b), but still persists up to the Drude limit
at T = 100 K (Fig. 1c). The analysis below will focus
on this high temperature Drude regime where quantum
oscillations vanish. To stay within the Drude limit, the
temperature was kept above T ≥ 30 K to suppress quan-
tum oscillations and below T ≤ 100 K to avoid parallel
conduction in the doping layers.

To theoretically model the observed LMA, a rectangu-
lar sample (Fig. 1 insert) with a local density gradient is
considered. The resistivities obey the local Drude equa-
tions ρxx(r) = 1/n(r)eµ(r) and ρxy(r) = B/n(r)e, and a
stream function ψ describes the current density j (r) =
ẑ × ∇ψ (r) [7]. The local electric field E (r) = ρ(r)j(r)
must satisfy ∇×E = 0 in steady state, leading to

ρxx∇2ψ +∇ρxx · ∇ψ − ẑ · (∇ψ ×∇ρxy) = 0. (1)

We then solve Eq. (1) under more general conditions than
previously considered: whereas Ref. [6] neglects ∇ρxx
in Eq. (1) for the high mobility and high magnetic field
limit, this term must be preserved for the general treat-
ment derived here. And unlike Ref. [6], we consider a
density gradient that can be oriented in an arbitrary di-
rection.

The ∇ρxx and ∇ρxy gradients can be defined in terms
of a normalized density gradient,

η = (ηx, ηy) =
∇n
n0

. (2)

The local mobility is assumed to follow a power-law
dependence on local density according to the standard
screening assumption µ(r) = µ0 · (n(r)/n0)γ , typically
0.5 < γ < 1.5 [17–19]. The subscript “0” identifies
local values at the center of the sample, whereby n0
is the density, µ0(B) the B-dependent mobility, and
ρ0(B) = 1/n0eµ0(B) the B-dependent Drude resistiv-
ity at the center of the sample. The resulting resistivity
gradients to first-order in η become

∇ρxx = −ρ0 (1 + γ)η, ∇ρxy = −ρ0µ0Bη. (3)

Equation (1) is now evaluated keeping all derivative
terms up to 1st order, and the four-point longitudinal
resistance at finite B becomes,

Rxx = R43,12 = −ρ0I
∫ x1

x2

(
−∂ψ∂y

)
y=0

dx

= eW/2ξx
∞∑
m=1

2m2π2Lρ0λm

sinh( 1
2λmW)

[
1−(−1)m cosh(L/2ξy)

]
[
(L/2ξy)

2+m2π2

]2 ,
(4)

with length scale ξ = (ξx, ξy) defined in terms of the
components of η

1
ξx

= −µ0Bηx − (1 + γ) ηy,
1
ξy

= −µ0Bηy + (1 + γ) ηx,

(5)
where

λm =

√[
B2µ2

0 + (1 + γ)
2
]
η2 + 4m2π2/L2. (6)

The analogous expression for Ryy = R32,41 follows from
the simple rotation transformation x→ −y, y → x, ξx →
−ξy, ξy → ξx, and L ⇀↽W .

In this paper, we consider only physically reasonable
density gradients across a roughly square sample (W ∼
L), such that the percent of density variation δ across
the sample defines a small parameter,

δ =
∆n

n0
= |η · (Lx̂+Wŷ)| . (7)

Here ∆n represents the maximum change in density
across the sample, and the relative accuracy of all ex-
pressions below are specified in terms of δ.
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The first task is to identify the angle of the density gra-
dient θ over the full range of B. Upon evaluating the ra-
tio Rxx (+B) /Rxx (−B) from Eq. (4), the B-symmetric
component of the exponential prefactor cancels, as does
the summation term which is approximately symmetric
in B for small δ, leaving

ln
Rxx (+B)

Rxx (−B)
= −Wηxµ0(B)B. (8)

The corresponding expression for Ryy follows from the
rotation transformation, and combined with Eq. (8) the
density gradient angle θ becomes,

tan θ =
ηy
ηx

= −
ln

Ryy(+B)
Ryy(−B)

ln Rxx(+B)
Rxx(−B)

· W
L
, (9)

accurate to within an error of less than 1
2δ.

To test Eq. (9), we independently estimate a den-
sity gradient angle θint interpolated from the densities
of neighboring samples. Figure 2a compares the interpo-
lated result θint = 117◦ to θ from the LMA method of
Eq. (9). The gradient angle θ compares favorably and
is constant at 114◦ over the entire range except for the
lowest magnetic fields.

The second task is to determine ρ0(B), the B-
dependent local resistivity, in the low B limit. From
Eq. (6) and its rotation transform, λm is independent of
magnetic field below B′x = 1/µ0|ηx|W and B′y = 1/µ0|ηy|L.
Therefore B ≤ B′ = min{B′x, B′y} sets the range where
the approximation λm ≈ 2mπ/L is valid [20], simplifying
Equation (4),

Rxx (B) = eW/2ξxρ0 (B)
16

π

[
tanh−1

(
e−π

W
L

)
+ sinh2 (L/4ξy) · ln

(
1 + e−π

W
L

) ]
.

(10)

Equation (8) and its rotation transform along with
Eq. (5) define η and ξ, in turn. Substituting into Eq. (10)
and solving for ρ0 gives an expression for the resistivity
which we label ρa0 ,

ρa0 (B) =
√
Rxx (+B)Rxx (−B) · π

16

[
tanh−1

(
e−π

W
L

)

+ sinh2

(
ln
Ryy (+B)

Ryy (−B)
/4

)
ln
(

1 + e−π
W
L

) ]−1
. (11)

The rotation transformed Eq. (11) is labelled ρb0, and the
most accurate estimate of ρ0 (B) is their average,

ρ0(B) =
1

2

[
ρa0(B) + ρb0(B)

]
, (12)

accurate to within δ.
Equations (11) and (12) generalize the classic van der

Pauw equations [15] for the case of a density gradient.
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FIG. 2. Gradient angle θ, resistivity ρ0, and gradient param-
eters fx and fy are plotted as a function of B for sample D4.
(a) The dotted line θ is constant 114◦ except at the lowest
B, and compares favorably to the dashed line θint = 117◦

interpolated from neighboring samples. (b) ρ0 (B) exhibits
flat Drude behavior everywhere except below B′′ = 0.2 T.
(c) Normalized density gradient components ηx and ηy deter-
mined from the slopes of the linear fitting lines of fx(B) and
fy(B) within B′′ < B < B′.

The four contacted corners of the sample can all have
different local resistivity and density, yet these equations
can still estimate the local resistivity in the center of a
sample ρ0(B). The result is plotted in Fig. 2b for sam-
ple D4, showing a Drude-like response with very little
dependence on B except near B = 0 T where quantum
phase coherent effects such as weak localization [21–23]
and memory effects [24–27] as well as electron-electron
interactions [28, 29] may play a role. We will there-



4

FIG. 3. Density color map of 2-inch GaAs QW wafer cal-
ibrated by dicing into 4 × 4 mm2 samples and measuring
the local density n0 of various samples. Black arrows rep-
resent local density gradients ∇nint = n0ηint interpolated
from this density map. Green (pink) arrows represent LMA
method density gradients ∇n = n0η using corner (flat) con-
tacts. Sample D4 is presented in greater detail (Figs. 1 and 2).

fore identify a lower limit for Drude-like behavior as B′′,
which for sample D4 is B′′ = 0.2 T.

The final task is to deduce the components of the den-
sity gradient from the low-B data. Multiplying Eq. (8)
and its rotated counterpart on both sides by ρ0 (B) yields
the functions:

fx (B) = −n0e
W

ρ0 (B) · ln Rxx (+B)

Rxx (−B)
= ηxB,

fy (B) =
n0e

L
ρ0 (B) · ln Ryy (+B)

Ryy (−B)
= ηyB.

(13)

Their slopes in B give the normalized density gradient,

∇n/n0 = η =

(
dfx
dB

,
dfy
dB

)
. (14)

In a perfect Drude model, these slopes would persist to
B = 0 T, but since B′′ sets the lower limit of the Drude
behavior we only expect a linear fit within the domain
B′′ < B < B′.

Figure 2c illustrates how the density gradient can be
deduced graphically. The functions fx(B) and fy(B)
are plotted along with 1/µ0(B)L and −1/µ0(B)W . The
condition for B′x = 1/µ0|ηx|W and B′y = 1/µ0|ηy|L is
graphically determined from their intersection, and the
low-B delimiter B′ is identified with the lesser of B′x
or B′y. From Fig. 2c, the density gradient components
ηx = −10% cm−1 and ηy = 22% cm−1 are then extracted
from the slopes of the linear fitting lines within the do-
main B′′ < B < B′.

We can verify this LMA analysis across an entire wafer
by creating an interpolated density map. The wafer is il-
lustrated in Fig. 3 with various colored tiles designating
the local measured densities. The interpolated normal-
ized density gradients ηint = ∇nint

n0
were deduced by cal-

culating the first derivative of the density map smoothed
via the so-called QR algorithm [30]. In addition to D4, six
other samples marked with origins of each arrow in Fig. 3
were selected, and density gradients ∇nint deduced from
the interpolated data are plotted as black arrows. For
comparison, the density gradient magnitudes and angles
for these same samples were also determined with the
LMA method, and ∇n = n0η is plotted with green ar-
rows. Conformal equivalence [31, 32] also allows us to use
four flat contacts at the center of each side to measure
the density gradient, provided we rotate the resulting an-
gle by 45◦, with the result plotted in Fig. 3 as the pink
arrows. The overlap of these gradient vectors verifies the
consistency of the LMA method for calibrating density
gradients.

As Fig. 3 demonstrates, the LMA analysis has the
practical consequence of providing a quick and simple
evaluation of density gradients of 2D conducting layers
of single samples, in contrast to the cumbersome task
of measuring the densities and mobilites of neighboring
samples. To measure high-mobility samples such as those
investigated here, higher temperatures are needed to in-
crease the resistivity ρ0 and thereby increase B′ so that a
wider range of B-field can be used to extract the density
gradient magnitude.

To summarize, we observed an asymmetry in the lon-
gitudinal resistance in the QH and Drude regimes, and
developed an analytical model to extract the density gra-
dient. Equations (9) and (11)-(14) are unique to this
work, and allow one to calculate the angle and magni-
tude of the density gradient, as well as the local resistiv-
ity ρ0 (B), from the longitudinal resistances Rxx and Ryy
in both +B and −B fields. The physics discussed here
allows one to quantify uniformity of 2D materials such
as graphene [33, 34], MoS2 [35–37], WS2 [38], β-metallic
phosphorus [39], and topological insulators (TI) [40, 41],
where individual micron-sized exfoliated samples do not
have the luxury of having “neighboring” pieces to deduce
density gradients. This work generalizes the classic vdP
analysis to handle the case of a density gradient.
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