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Abstract

Quasi-two dimensional itinerant fermions in the Anti-Ferro-Magnetic (AFM) quantum-critical

region of their phase diagram, such as in the Fe-based superconductors or in some of the heavy-

fermion compounds, exhibit a resistivity varying linearly with temperature and a contribution to

specific heat or thermopower proportional to T lnT . It is shown here that a generic model of

itinerant AFM can be canonically transformed so that its critical fluctuations around the AFM-

vector Q can be obtained from the fluctuations in the long wave-length limit of a dissipative

quantum XY model. The fluctuations of the dissipative quantum XY model in 2D have been

evaluated recently and in a large regime of parameters, they are determined, not by renormalized

spin-fluctuations but by topological excitations. In this regime, the fluctuations are separable in

their spatial and temporal dependence and have a spatial correlation length which is proportional to

logarithm of the temporal correlation length, i.e. for some purposes the effective dynamic exponent

z = ∞. The time dependence gives ω/T -scaling at criticality. The observed resistivity and entropy

then follow. Several predictions to test the theory are also given.

PACS numbers:
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The problem of AFM quantum-critical fluctuations in itinerant fermions has been studied

extensively [1–5] by simple extensions of the theory of classical critical fluctuations. This

idea has been proven by S-S. Lee [6] to be uncontrolled in two dimensions. (The theory is

controlled for AFM fluctuations in 3D; the measured fluctuation spectra and the properties

calculated [7] from it agree well with the experiments also.) Lee has also proposed methods

for expansion about 3 dimensions for a problem with a 1 dimensional fermi-surface, as well as

a different expansion about a line in the spatial dimension - Fermi surface dimension plane.

Other procedures [8–10] have also been proposed, each yielding different results. While these

methods (at least to linear order in the expansion parameter) appear controlled, they do not

give the observed singular-Fermi-liquid properties. All these are theories of criticality due to

renormalized spin-waves. Other semi-phenomenological ideas [11–13], with varying degrees

of justification have also been proposed. Imaginative ideas based on string theory-duality

have also been advanced [14]. At least so far, there is no sense of a symmetry breaking in such

theories, which appears invariably in experiments astride the region of singular Fermi-liquid

properties.

The linear in T resistivity and the T log T specific heat and thermopower in the AFM

quantum-critical region in 2D [15] [16, 17] are reminiscent of the properties in the similar

region in hole-doped cuprate superconductors. The quantum critical point associated with

the singular Fermi-liquid properties in the hole-doped cuprates is obviously not of the AFM

order, which goes to 0 at dopings far from the regime of such anomalous metallic properties

[19]. A quite different order parameter, which does not break translational symmetry, was

predicted [20] for which there is experimental evidence in many different kinds of experiments

[21–24]. The fluctuations of such an order parameter can be mapped to a dissipative quantum

XY model with four-fold anisotropy [25].

The observation of similar singular Fermi-liquid properties in the AFM quantum-critical

region suggests an investigation to see if AFM fluctuations are also described by a similar

model. A generic model of itinerant fermions, which have a commensurate or an incommen-

surate planar AFM transition, or one which has an incommensurate uni-axial transition, is

shown here to transform canonically to a model with a superconductive transition, which

is described by a dissipative quantum XY model. The fluctuations of the AFM model near

the AFM wave-vector Q can be obtained from the known fluctuations of the XY model

in the long wave-length limit. Fermions acquire the observed singular properties through
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scattering such fluctuations. It is generally agreed that a pre-requisite for understanding

superconductivity is understanding the normal state anomalies above Tc.

Canonical Transformation: Consider the following Hamiltonian for fermions

H =
∑

<ij>,σ=↑,↓
tija

†
i,σaj,σ +H.C.+ U

∑

i

(ni↑ − 1/2)(ni↓ − 1/2) + Iz(S
z
i )

2 − µni + hSz
i . (1)

< ij > sums over nearest neighbors on a bi-partite two dimensional lattice. U > 0 so that

for large enough U/t, a Mott insulating state is expected with AFM correlations or commen-

surate order at half-filling when the chemical potential µ = 0. Beyond some deviation from

half-filling, a metallic state is expected, with AFM correlations at low enough temperatures.

These correlations are in general peaked at the incommensurate vectors Q = (Q0+q0) with

Q0.R0 = π, where R0’s are the nearest neighbor vectors and q0 depends on the deviation

from half-filling. A single ion anisotropy term with coefficient Iz > 0 ensures that the AFM

correlations are stronger for planar spin-correlations, i.e. spin in the xy plane, and Iz < 0 en-

sures the same for uni-axial correlations, i.e spins along the z-axis. Only h = 0 is considered

in this paper but finite h may be useful in further work. No magnetic order is expected for

large enough deviation from half-filling. So, there is a quantum critical point as a function

of doping. The Hamiltonian of Eq. (1) may be paradigmatic of a general class of models

with AFM correlations, but specific details of the Hamiltonian for the actual experimental

systems need to be examined to be certain.

The (canonical) transformations [28],

ai,↑ → eiζi ãi,↑; a†i,↑ → e−iζi ã†i,↑; (2)

ai,↓ → ã†i,↓e
iQ0.Ri+iζi ; a†i,↓ → ãi,↓e

−iQ0.Ri−iζi.

with

ζi = −1

2
q0 ·Ri, (3)

transform the Hamiltonian of (1) to

H̃ = −Ũ
∑

(ñi↑ − 1/2)(ñi↓ − 1/2)−
∑

i

(h̃S̃z
i + µ̃ni) (4)

+
∑

<ij>, (α=±
t̃ije

−iα(ζi−ζj)ã†i,σãj,σ +H.C.
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Here α = ± for σ =↑, ↓, respectively, and

t̃ = t; Ũ = U − 2Iz, h̃ = µ, µ̃ = h. (5)

The transformed Hamiltonian is a model with on-site attractive interactions, a Zeeman field

related to the deviation of the original model from half-filling and a spin-dependent phase

factor (α(ζi − ζj), α = (±1) for σ = (↑, ↓)), on the link (i, j) related to the incommensurate

vector q0 or the deviation from half-filling. As a result, the Fermi-surface of up and down

spins are shifted in opposite directions by ±q0/2; thus α(ζi− ζj) is a spin-orbit field. Corre-

sponding to the transitions to planar AFM and uni-axial AFM in model (1), model (4) has

a superconducting ground state for small enough h̃ for Iz > 0 and a charge density wave for

Iz < 0. Also, corresponding to a quantum critical point in model (1) for µ = µc with other

parameters fixed, there is a quantum critical point in model (4) for h̃ = h̃c, as will be clearer

below.

Relation of Spin-Correlations to Superconducting Correlations: With the canon-

ical transformations, the spin-raising/lowering operator in H are related to the Cooper pair

creation/annihilation operator in H̃, and Sz
i is related to the density operator,

S+
i → eiQ.RiΨ+

i , S−
i → e−iQ.RiΨi; Sz

i → ñi − 1 (6)

Ψ+
i = ã+i↑ã

+
i↓, etc. (7)

Define the response functions for two operators A and B for a Hamiltonian H by

χH
(AB)(i, j; t− t′) = −iθ(t− t′)〈[Ai(t), Bj(t

′)]〉H (8)

Consider Iz < 0 so that χH
(SzSz)(Q+ q, ω) are important. They map to incommensurate

charge density fluctuations at the same momenta. Such fluctuations are described by the

fluctuations of an XY model [29]. This follows from the fact that an incommensurate wave of

charge (or z-component of magnetization) has in general an order parameter A sin(Q ·Ri +

φ), where A is the amplitude. Any spatially uniform value of φ has the same energy, just

as the phase-variable in a superfluid. Spatial variations in φ cost an energy ∝ ρs‖|∇‖φ|2 +
ρs⊥|∇⊥φ|2, where ∇‖,⊥ refer to variations parallel and perpendicular to Q. Also the energy

can only depend periodically on the difference of phase (φi − φj) between two points i and

j on the lattice. Therefore, the uniaxial incommensurate AFM fluctuations are described

by an XY model. The edge dislocations in the incommensurate wave in 2D correspond
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to vortices in 2D superfluids. For the uni-axial case, unlike the case for the planar case

discussed below, the mapping of Eq. (2) is in fact unnecessary.

Consider Iz > 0 so that the important fluctuations are planar. These are the relevant

fluctuations for the Fe-based compounds and for some heavy Fermions. It follows, using the

definition (8) that knowledge of any response function of model (1) gives also a response

function of (4) and vice-versa. The two are related by the (2). In particular, the planar

spin-response function in the model of Eq. (1) is identical to the Cooper pair response

function for the model of Eq. (4):

χH
(S+S−)(Q+ q, ω) ≡ χH̃

(Ψ+Ψ)(q, ω). (9)

The identity (9) asserts that if the correlation function at the left diverges at q = 0 for

some parameters, signifying an AFM transition, the correlation function at the right also

diverges at q = 0 for parameters related to each other by (5), signifying a uniform s-wave

superconducting transition. Moreover, the planar AFM correlation at small q around Q

at any ω in model (1) may be obtained exactly from the superconducting correlations at q

at the same ω in model (4). Either model may have other phase transitions, which would

also bear correspondence. They are not relevant to the problem addressed here, which has

only to do with finding the correlation functions for the paramagnetic to AFM transition in

model (1).

The relation between the correlation functions does not say anything at all about the

value of the parameters where the critical point occurs. It is however worthwhile to discuss

the physical reason for the transition in the superconducting model with a Zeeman field.

The Zeeman field in model (4) make the Fermi-sphere for one spin bigger than the other

and the spin-orbit field displaces them with respect to each other by 2q0. The spin-orbit as

well as the Zeeman field are taken into account in the one-particle spectra by the condition

of equal chemical potential, by introducing spin-dependent Fermi-vectors

pF = p0
F + (δpF )σ3; δpF ≡ q0 +

gµBh̃

|vF |
(10)

for q0/p
0
F ≪ 1. Time-reversal symmetry is preserved by the shift q0σ3 while it is broken

by the shift proportional to h̃. The latter leads to a displacement in momentum of the up

and down Fermi-surfaces. Therefore the usual logarithmic singularity for s-wave Cooper

pairing at zero total momentum (q=0), due to attractive interactions, is cut-off due to the
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spin-splitting energy gµBh̃. There is no transition even at T → 0 for h̃ larger than a critical

field h̃c. This corresponds to the AFM quantum-critical point in repulsive U model at a

critical value µc connected to h̃c by (5).

The approach to finding the quantum-critical correlations of the itinerant AFM in 2d, by

using Eq. (9), is worthwhile because the quantum-critical correlations of the superconductor

in 2d are known rather accurately [26]. Near the phase transitions of model (4), we may,

using techniques such as the Hubbard-Stratonovich transformation, write it in terms of a

Hamiltonian for its collective fluctuations Hcoll, for the Fermions HF and for the interaction

between the fermions and the collective fluctuations Hint.

H = HF +Hcoll +Hint. (11)

The model for collective critical fluctuations in a superconductor may be expressed in terms

of the pair-field operators Ψ, which are products of a pair of time-reversed fermions. In 2D,

the amplitude fluctuations are irrelevant and the phase fluctuations determine the critical

properties. The critical fluctuations are then those for an XY model for a field Ψ(r, τ) ≡
|Ψ|eiθ(r,τ), with |Ψ| weakly enough varying that it may be kept fixed [30, 31]. The action

for Hcoll for the 2d-XY model, with a four-fold anisotropy term and including dissipation, is

expressed in terms of the phase θi(τ) on a lattice of sites Ri as,

Scoll = −
∫ β

0

dτ
∑

i

1

2Ec

(dθi(τ)

dτ

)2

+K0

∑

j(i)

cos
(

θi(τ)− θj(τ)
)

+ h4 cos 4θi(τ) + Sdiss. (12)

The relationship of the parameters in (12) and (4) is hard to derive microscopically, except

for weak-coupling or for strong coupling, |U |/t << 1, or>> 1, respectively. In general terms,

K is related to the superfluid density which decreases as the Zeeman field h̃ increases, and

Ec to the compressibility. h4 reflects the anisotropy of the kinetic energy parameter tij.

The relations locate the quantum-critical point but they are unnecessary for finding the

correlation functions around the critical point.

Sdiss is the dissipative term in the action. It is necessary to show that, under the trans-

formations (6), the form of the dissipation also goes from that in one model to that of the

other. The dissipation used [2, 4] in the itinerant AFM on symmetry grounds is of the form

Sdiss =
∑

ω,q

iα|ω||S(Q+ q, ω)|2. (13)
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This arises from decay of collective AFM spin-fluctuations into incoherent particle-hole pairs

with spin 1. In the problem of quantum-criticality of the XY model [31], the nature of

dissipation has been chosen to be that of the Caldeira-Leggett form [32], which is due to

the decay of collective super-current J to incoherent fermion current. The current J is

proportional to the gradient of the phase, ∇ θ, so that the Caldera-Leggett dissipation for

small q is,

SCL
diss =

∑

q,ω

i α′|ω| q2 |θ(q, ω)|2. (14)

Here α′ = 1
4π2RQ/Rs; RQ is the quantum of resistance for Cooper pairs, equal to h/4e2 and

Rs is the resistance per square of the normal state [31]. Under the transformations (14) the

super-current operator Jij ∝ Im(Ψ+
i Ψj) transforms to Im(S+

i S
−
j e

iQ·Rij ). On Fourier trans-

formation, this becomes |Q+ q|2ImS+S−(Q+ q, ω). q may be dropped in |Q+ q|2 because
of the large fixed |Q|. In 2D, only the imaginary part of the order parameter correlations are

critical. It follows that the Caldera-Leggett dissipation (14), leads on using the transforma-

tions (6), to the usual dissipation of the itinerant AFM model (13) with α = α′|Q|2. Similar

proportionality for dissipation for the phase fluctuations of the incommensurate uni-axial

model to dissipation in the XY model also follows.

The dissipative quantum 2D-XY model has a rich phase diagram [26, 27, 33] at T = 0.

At α = 0, it has a transition of the 3D-XY class for Ec/K0 . 12 with the dynamical critical

exponent z = 1. As α increases, the transition continues to be in same class with the critical

ratio of Ec/K0 increasing slightly, till about α ≈ 0.01, beyond which, it changes to the

z = ∞, with the critical value of Ec/K0 sharply increasing with the critical value of α. The

model also has some interesting cross-overs to 2D critical behavior of the Kosterlitz-Thouless

kind and from that to the 3D ordered state as a function of T 2/(K0Ec). We focus here on

the T = 0 quantum critical response at the disordered to the 3D ordered phase transition

with dynamical critical exponent z → ∞, as it appears to be relevant to the experiments. It

is important to note that this occupies a substantial part of the phase diagram. This may be

seen from the fact that α is proportional to the inverse 2D resistivity and its lower limit is

bounded by the maximum resistivity possible for a disordered 2D problem to be considered

itinerant. z = 1 transition only occurs for the very disordered problem with resistance close

to the unitarity limit beyond which the model of itinerant fermions is not valid. The decrease

of the resistivity of the material and/or increase in ratio of the Josephson coupling to the
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charging energy, K0/Ec drives the transition with z → ∞.

Given the relationship (9) and the results in Ref. (26, 25), the correlation func-

tion function χH
S+S−

(r, τ) for the AFM, in the quantum-critical regime, is obtained from

χH̃
Ψ+Ψ−

∝< eiθ(r,τ)e−iθ(0,0) > for the XY model

χH
S+S−

(r, τ) = χ0
1

τ
e−

√
τ/ξτ ln

(rc
r

)

e−r/ξreiQ.r, (15)

ξτ = τc e
√

pc
pc−p ; ξr/rc ≈ ln(ξτ/τc). (16)

Here τ is the imaginary time, periodic in 1/(2πkBT ), which has a lower cut-off iτc ≈
(K0/Ec)

−1/2. p is the set of parameters, for example α and K0/Ec, which drive the transition

and determine the critical line pc.

There are several remarkable features in these results. The correlation function is sepa-

rable in space and time; the spatial correlation length diverges only logarithmically with the

temporal correlation i.e. the effective dynamical exponent z → ∞; the temporal correlation

at the critical point p → pc is 1/τ , which gives an absorptive part as a function of ω and T

∝ tanh(ω/2T ), with an upper cut-off of order ωc = (−iτc)
−1. This simple scaling persists

over an exponentially large range in the
(

T, (p− pc)
)

plane.

To compare with experiments, it is more useful to Fourier transform the correlation

function to momentum and frequency variables. The Fourier transform to frequency space

can be reduced to doing an integral which can only be evaluated numerically. The results

and the fits to it to a functional form are given in Ref. (26). We quote this result:

Im χ(ω,q) = −χ0 tanh
( ω

2kBT

)

Fℓ(Tξτ)Fc

( ω

ωc

) 1

π

1

|Q− q|2 + κ2
k

, (17)

Fℓ

(

T

κω

)

≈ 1
(

1 +
√

κω/2πT
)2 , for ω/T ≪ 1;

≈ 1

4

(

1 + 3e−
√
κω/T

)

for ωc/T ≫ ω/T ≫ 1.

κk = ξ−1
r , and κω = ξ−1

τ is the low frequency cut-off which increases extremely slowly (see Eq.

(15) from 0 on deviation from criticality. Fc

(

ω
ωc

)

is a cut-off function, Fc(0) = 1, Lim(ω >>

ωc) Fc

(

ω
ωc

)

= 0. Note that Imχ(ω,q) is a separable function of ω and q.

Since, following Caldeira-Leggett, Eqs. (13) are derived by eliminating the coupling of the

collective currents to fermion currents, it follows that α = Im < jj >F (q = 0, ω) = |ω|σ(ω).
< jj >F (q = 0, ω) is the fermion current-current correlation in the long wave-length limit,
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so that σ(ω) is their conductivity. To test the consistency of the theory, we need to look

at only the limit ω → 0, of σ(0) = ρ−1, where ρ is the resistivity. So, it is enough to

look for the renormalization of the impurity contribution ρ(ω, T ) to the resistivity. For

impurities coupling to a conserved quantity, for example the density, there is no (singular)

renormalization of the impurity resistivity [34]

Experimental Consequences: The results obtained in this paper are for a very simple

model of itinerant Anti-ferromagnetism. The final results for the correlation function are

also valid for incommensurate 2d Ising anti-ferromagnets because as discussed, their critical

properties are also determined by an XY model. In heavy fermions, as well as in the

Fe-based compounds, the multi-band nature of the problem and the diverse nature of the

renormalization for the different orbitals with different interactions is essential for a complete

description. One may ask however if universal features may govern the phenomena so that

the present treatment gives some essential results. The most direct test of the applicability

of the theory is a measurement of χ(ω, q). Most critical properties can be derived once this

is known.

There is only one measurement of the fluctuation spectrum at several (q, ω, T ) near an

AFM quantum-critical point in a quasi-2D heavy-fermion system - CeCu6−xAux [35]. Within

the limited accuracy of the data, taken by the essential but difficult technique of inelastic neu-

tron scattering, the results are consistent with Eq. (17) [36], both for the ω/T -dependence

as well as the separability of the ω and q dependence. In the same paper [36], a few results

obtained [45] for the compound BaFe1.85Co0.15As2 are also shown to be consistent with the

results here. In neither case are the measurements done at various dopings near the critical

point to study the variations with the correlation lengths. We urge more detailed experi-

mental study of the correlation functions. It is amusing to note that the measurements on

the very under-doped cuprate compounds, in the region where the AFM correlation lengths

are more than about 10 lattice constants, show a frequency and temperature independent

correlation length about the AFM Bragg-vectors, and a tanh(ω/2T ) scaling in Im χ(q, ω)

[37].

Earlier [18], one relied on the assumed non-singular nature of the spatial correlations and

a momentum independent coupling vertex g0 to fermions, to predict that the single-particle
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self-energy of the fermions, due to the interaction term Hint is

Σ(k, ω) = g20χ0N(0)
(

ω ln(
ωc

x

)

− i
π

2
x
)

, (18)

for x ≈ max(|ω|, T ) . ωc. N(0) is the density of states near the Fermi-energy. For x &

ωc, the imaginary part goes to a constant. The Monte-Carlo calculations have now found

that the spatial correlation length also diverges, albeit only as a logarithm of the temporal

correlation length, as given by Eq. (17). We now also have a theory of the vertex g(k,k′) [44],

with which the fluctuations at momentum (k− k′) scatter fermions from k to k′. Including

both these changes, the result for the self-energy do not change in any essential way from

that given by (18), See Supplemental material [38]. Given the momentum-independent self-

energy, there is no back-ward scattering vertex correction for current transport. This was

used in (41) to derive the resistivity proportional to T in a solution of the Boltzmann equation

including the full collision operator. The same result was obtained [42] more formally by

deriving the density-density correlation for a marginal Fermi-liquid of the conserving form

with a diffusion constant proportional to ImΣ. Using the relation between the density-

density and the current-current correlations, the result for the resistivity ∝ T is again

obtained. Given such a self-energy, one can turn to the exact expression for the entropy in

terms of the single-particle Green’s function to find that using (18), the specific heat has a

singular contribution ∝ T lnT , except for very small T.

Both the marginal fermi-liquid energy/temperature dependence and the momentum-

independence in Eq. (18) are important un-tested predictions in antiferromagnetic quantum

critical points. In multi-band compounds, such as the Fe-based high temperature supercon-

ductors, the coefficient of proportionality g2N(0) may vary between bands and be ambiguous

in regions where the bands come close together. So, it is best to measure the self-energy

at different angles across the various fermi-surfaces for low energies. These results are quite

unlike the renormalized spin-wave theories, which has anomalous self-energies only at the

”hot-points”, i.e. those where the fermi-surface spans Q. The results for the self-energy are

much stronger than the linearity in the temperature dependence of the resistivity, which

follows from it. As mentioned above, the linear in T resistivity and a T lnT contribution

to entropy in the quantum fluctuation regime of quasi-2D antiferromagnets appear to be

universally observed. Beside the linearity in T of the resistivity, the change in resistivity

in a magnetic field of the form f(|B|/T ), as observed [17], is given by the theory because
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the Hamiltonian (Energy) changes linearly with |H| through the Zeeman term and there is

no linear coupling of field to the order parameter. It also follows [18] from Eq. (17) that

the nuclear relaxation rate (for nuclei at which the projection of the fluctuation spectra is

finite) should have a nearly constant contribution as a function of temperature, unlike the

Korringa law T−1
1 ∝ T in Fermi-liquids. Evidence for such a behavior has been also found

[46] in the Fe-compounds near quantum criticality.
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