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 It is shown numerically and analytically that when an optical pulse approaches a 

moving temporal boundary across which the refractive index changes, it undergoes a 

temporal equivalent of reflection and refraction of optical beams at a spatial boundary. 

The main difference is that the role of angles is played by changes in the frequency. The 

frequency dependence of the dispersion of the material in which the pulse is propagating 

plays a fundamental role in determining the frequency shifts experienced by the reflected 

and refracted pulses. Our analytic expressions for these frequency shifts allow us to find 

the condition under which an analog of total internal reflection may occur at the 

temporal boundary. 

 

 Reflection and refraction of light at a dielectric interface and Snell’s law 

describing them have been known for centuries and are topics discussed at length in 

physics textbooks [1,2]. However, their temporal analog where an electromagnetic pulse 

arrives at a temporal interface has attracted much less attention [3,4]. A temporal 

interface is the boundary in time separating two regions of different refractive indices. In 

this Letter, we discuss “reflection” and “refraction” of optical pulses at such a temporal 

boundary during their propagation inside a dispersive medium. Previous works have 

examined temporal reflection and refraction in nondispersive media assuming that 
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refractive index changes everywhere in the medium at a certain time [3,4]. This is 

analogous to examining the case of normal incidence in space. Temporal changes in the 

refractive index have also been studied recently in the context of adiabatic wavelength 

conversion [5–11]. 

 From a physics perspective, a spatial boundary breaks translational symmetry. As 

a result, the momentum of a photon can change but its energy must remain unaffected. In 

the case of a static temporal boundary, momentum of the photon remains unchanged but 

its energy must change. For this reason, a change in angle at a spatial interface translates 

into a change in the frequency of incident light when reflection and refraction occur at a 

temporal interface. We focus on optical pulses propagating inside a dispersive medium to 

reveal novel temporal and spectral features occurring when the pulse experiences 

reflection and refraction at a moving temporal boundary. In this case, both the energy and 

momentum of a photon must change simultaneously while crossing the boundary. 

 To simplify the following discussion, we assume that the optical pulse is 

propagating inside a waveguide with the dispersion relation β(ω) such that neither its 

polarization nor its transverse spatial shape changes during propagation. When the pulse 

contains multiple optical cycles, β(ω) can be expanded in a Taylor series around its 

central frequency ω0 as ( ) ( ) ( )( )2
0 1 0 2 02 ,β ω β β ω ω β ω ω= + − + −  where we neglect 

all dispersion terms higher than the second order [12]. Physically, β1 is the inverse of the 

group velocity and β2 is the group velocity dispersion (GVD). In the case of a temporal 

boundary moving with the speed VB, we work in a reference frame moving at the same 

speed as the boundary. Using the coordinate transformation t = T–z/VB where T is the 
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time in the laboratory frame and t = 0 is set to the peak of the optical pulse at z = 0, the 

dispersion relation in the moving frame becomes 

 ( ) ( ) ( ) ( )22
0 1 0 0 ΒΗ ,

2
t T

ββ ω β β ω ω ω ω βΒ′ = + Δ − + − + −  (1) 

 

where Δβ1 = β1 – 1/VB and ( )0 0 0 ck n kβ ωΒ = Δ = is the change in the propagation 

constant caused by a sudden index change Δn for t > TB, and TB is the delay between the 

launching of the optical pulse and the start of the temporal boundary’s propagation. The 

Heaviside function H (t – TB) takes a value of 0 for t < TB and 1 for t > TB. We stress that 

by including dispersion and allowing for a traveling boundary we have expanded on the 

concept of temporal reflection and refraction given in Ref. [3]. 

 To simplify the following discussion, we work with the slowly varying envelope 

A(z, t) of the pulse. Use of Maxwell’s equations together with the dispersion relation in 

Eq. (1) leads to the following time-domain equation [12]: 

 

 ( )
2

2
1 B B2 .

2
A A Ai i H t T A
z t t

ββ β∂ ∂ ∂+ Δ + = −
∂ ∂ ∂

 (2) 

  

 We solved Eq. (2) numerically with the standard split-step Fourier method [12], 

assuming a Gaussian shape of input pulses. For the numerical simulations that follow, the 

pulse width was set to T0 = 1 ps, the temporal boundary was located at TB = 5 ps, and the 

dispersion was taken to be normal (β2 = 0.005 ps2/m).We chose Δβ1 = 0.1 ps/m to ensure 
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that the center of the optical pulse would cross the boundary halfway through the total 

propagation length of z = 100 m. 

 As a first example of temporal reflection and refraction, Fig. 1 shows (a) temporal 

and (b) spectral evolutions of a Gaussian input pulse for βB = 0.5 m–1, a value 

corresponding to an index change of <10–7 at a wavelength of 1 μm. The temporal 

evolution in Fig. 1 (a) is strikingly analogous to that of an optical beam hitting a spatial 

boundary. Although most of pulse energy is transmitted across the boundary, the pulse 

“bends” toward it and its speed changes. The transmitted pulse is also narrower in time, 

similar to how a refracted optical beam becomes narrower in space when it is bent toward 

the spatial interface. A small part of pulse energy is “reflected” and begins traveling away 

from the temporal boundary. This reflected pulse has the same temporal width but its 

speed increases considerably.  

 Figure 1(b) shows how temporal changes are accompanied by a multitude of 

spectral changes. In particular, notice how the spectrum shifts and splits as the pulse 

crosses the temporal boundary. Recall that the temporal analog of an angle is the 

frequency. The dispersion relation in Eq. (1) should be able to explain all spectral 

changes. Figure 2 shows the dispersion curves for t < TB (dashed blue) and t > TB (solid 

green). In the moving frame, the slope of these curves gives the speed of the pulse 

relative to the temporal boundary, rather than the actual group velocity. As mentioned 

earlier, even though β (related to photon momentum) is not conserved, the corresponding 

quantity β′ is conserved in the moving frame. We use this conservation law to understand 

the spectral shifts of refracted and reflected pulses. 
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 To conserve β′ when transitioning from the t < TB region to the t > TB region, 

each frequency component must shift from the dashed curve in Fig. 2 to a point on the 

solid curve with the same value of β′. Because the curve is locally parabolic, the two 

frequencies at points (1) and (2) on the solid curve match the initial β′. Only point (1) is a 

valid solution, however, since the slope, related to the speed of the pulse, should have the 

same sign for the transmitted pulse. The entire pulse spectrum shifts toward the red side 

(for βB > 0) since each frequency component of the pulse must shift accordingly. Since 

the slope of the dispersion curve at the new central frequency is different, the transmitted 

pulse must travel at a different speed relative to the temporal boundary. This change in 

the group velocity is what leads to the apparent bending observed in Fig. 1(a). 

 The reflected pulse is caused by the second point on the dashed curve that has the 

same propagation constant, marked as point (3) in Fig. 2. This point must have the 

opposite slope to ensure that the pulse reflects back into the t < TB region. We stress that 

the reflected pulse does not travel backward in time or space; rather its speed changes 

such that it remains in the t < TB region. Both the “reflected” pulse and temporal 

boundary continue to propagate through the dispersive medium in the +z direction. 

Figure 1(b) shows that the spectrum of the reflected pulse is shifted toward the red side 

by about 6.37 THz. It also shows that such a large spectral shift occurs over a relatively 

small distance during which the pulse passes through the temporal boundary. 

So far, we have considered only the central frequency of the optical pulse. 

However, the pulse has a finite spectral width and β′ must be conserved for all 

frequencies in the spectrum. In Fig. 2, the shaded region shows the width of the input 

pulse spectrum and the corresponding range of propagation constants for t < TB. We can 
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see that the shaded region on the transmitted curve covers a much wider spectral region 

than on the incident curve. This leads to the spectral broadening and temporal narrowing 

of the refracted pulse. If the sign of βB was reversed, shifting the curve in the opposite 

direction, the pulse spectrum would be compressed and the pulse would correspondingly 

broaden in time. 

 One may ask how much the momentum changes in the laboratory frame. It is easy 

to see ( )0 B .Vβ β ω ω′= + −  Since β′ remains constant, β changes by an amount 

( )0 B .Vω ω−  Clearly, a moving boundary breaks both temporal and spatial symmetries, 

forcing momentum and energy to change simultaneously. This is similar to the behavior 

observed in interband photonic transitions [13]. 

 To obtain analytic expressions for the spectral shifts caused during temporal 

reflection and refraction, we impose the requirement of momentum conservation on β′ 

given in Eq. (1). To do so, we choose a specific frequency component, for example, the 

center frequency ω0 and set β′(ω) = β0 in Eq. (2), resulting in the quadratic equation 

 

 ( ) ( ) ( )22
0 1 0 B B 0.

2
H t Tβ ω ω β ω ω β− + Δ − + − =  (3) 

 

The last term vanishes for t < TB and the two solutions of the quadratic equation are  

 

 ( )0 0 1 2and 2 .i rω ω ω ω β β= = − Δ  (4) 
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These solutions represent the incident and reflected frequencies and correspond to the 

points (1) and (3) in Fig. 2. The transmitted frequency is found by noting that the last 

term in Eq. (3) is finite for t > TB and has the value βB. Solving the quadratic equation 

again, we obtain 

 

 
( )

1 B 2
22 1

21 1 .t i
β β βω ω

β β

⎡ ⎤Δ ⎢ ⎥= + − ± −
⎢ ⎥Δ⎣ ⎦

 (5) 

 

As discussed earlier, only positive sign corresponds to a physical solution shown as 

point (2) in Fig. 2. In the limit 1 B 2 ,β β βΔ  this equation can be approximated as 

 

 0B

1 1
.t i i

k nβω ω ω
β β

Δ= − = −
Δ Δ

 (6) 

 

The numerical results shown in Fig. 1 agree with these analytic expressions derived using 

the concept of momentum conservation. 

 The analytical results found in this Letter provide considerable insight into the 

phenomena of temporal reflection and refraction of optical pulses. Consider first the 

frequency shift of the reflected pulse: Eq. (4) indicates that this shift depends on both the 

sign and magnitude of the GVD governed by the parameter β2. In particular, it disappears 

as β2 → 0. It follows from Eq. (1) that the parabolic dispersion curve seen in Fig. 2 

reduces to a straight line in this limit, indicating that point (3) in Fig. 2 ceases to exist. 

Note also that the direction of frequency shifts depends on the nature of GVD. A red shift 
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occurring for normal dispersion becomes a blue shift in the case of anomalous dispersion. 

Another noteworthy feature is that the frequency shift does not depend on the refractive 

index change Δn across the temporal boundary. Of course, the energy transferred to the 

reflected pulse depends strongly on the magnitude of βB. These features are analogous to 

what occurs at a spatial interface. Equation (4) indicates that even larger spectral shifts 

are possible by reducing the magnitude of the GVD parameter, i.e., by operating close to 

the zero-dispersion wavelength of the waveguide used to observe this phenomenon. 

 The refracted pulse also undergoes a spectral shift that is analogous to a change in 

the direction of an optical beam refracted at a spatial boundary. As seen in Eq. (5), this 

shift depends on the magnitude of βB, in addition to the GVD parameter β2 and the 

differential group delay (DGD) Δβ1 of the pulse. In the limit 1 B 2 ,β β βΔ  the spectral 

shift becomes independent of β2. Its magnitude in all cases is much smaller than that 

found for the reflected pulse. As an example, for the case examined in Fig. 1, this shift is 

0.93 THz, which is much lower than the 6.37 THz shift of the reflected pulse.  

 One may ask what the temporal equivalents of the laws of reflection and 

refraction are. It is difficult to find analogous relations since the concept of an angle, 

familiar in the spatial context, is replaced with the DGD Δβ1 indicating the speed of the 

pulse relative to a temporal boundary. Nevertheless, one may gain some insight if we use 

the location of extremum of the dispersion curve in Fig. 2 as a reference frequency ωc, 

where the slope dβ/dω = 0. If we shift the origin in Fig. 2 so that all frequencies are 

measured from the reference frequency c 0 1 2ω ω β β= − Δ  and use the notation Δω = 

ω−ωc, the reflected and transmitted frequencies are related to the input frequency as  
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( )

B 2
2

1

2, 1 .r i t i
β βω ω ω ω
β

Δ = −Δ Δ = Δ −
Δ

 (7)  

 

 The first equation is analogous to the law of reflection. The second one can be 

written in the following suggestive form: 

 

 
( )

B 2
2

1

2cos , sin .t i
β βω ω α α
β

Δ = Δ =
Δ

 (8) 

 

For small values of βB, α remains relatively small, resulting in small frequency shifts 

during refraction, and small changes in the pulse speed. Frequency shifts increase with 

increasing βB. At some value of parameters, α becomes π/2, and Δωt vanishes. At that 

point, the transmitted pulse’s central frequency coincides with the frequency ωc. 

 We must ask what happens if βB is large enough that α loses its meaning. Since 

Δωt becomes undefined, no refracted pulse can form past the temporal boundary and the 

incident pulse must be totally reflected. This is the temporal analog of the well-known 

phenomenon of total internal reflection (TIR). The condition for the temporal TIR is 

found from Eq. (8) to be 

 

 B 2 12 .β β β> Δ  (9) 
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 Temporal TIR can also be understood from the two dispersion curves shown in 

Fig. 2. When βB is large enough to shift the green curve in Fig. 2 completely out of the 

shaded region, momentum conservation or phase matching cannot be achieved for any 

spectral component of the incident pulse. As a result, no pulse energy can enter the t >TB 

region beyond the temporal boundary; however, the momentum can still be conserved for 

the reflected pulse. As a result, the pulse should be completely reflected at the boundary. 

We performed numerical simulations to confirm that this is indeed the case. Figure 3 

shows the numerical results for βB = 1.4 m–1, a value that places the transmitted curve 

just above the shaded region. As predicted by our simple theory, there is no transmitted 

pulse and the entire pulse is reflected. The spectral evolution in Fig. 3(b) shows how the 

pulse energy is transferred to the reflected pulse over a small distance after the trailing 

end of the incident pulse hits the temporal boundary. Closer inspection reveals that a 

portion of the pulse extends past the temporal boundary, forming a temporal analog to the 

evanescent wave. 

 The existence of temporal TIR seems to contradict the findings in Ref. [3], where 

a temporal analog of Snell’s law is derived that does not allow for TIR to occur. 

However, the study in Ref. [3] did not include the effects of dispersion. Indeed, our 

theory shows that no reflection occurs if β2 is set to 0.  

In summary, we have shown that when an optical pulse approaches a moving 

temporal boundary across which the refractive index changes, it undergoes a temporal 

equivalent of reflection and refraction of optical beams at a spatial boundary. The main 

difference is that the role of angle is played by changes in the frequency. The dispersion 

curve of the material in which the pulse is propagating plays a fundamental role in 
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determining the frequency shifts experienced by the reflected and refracted pulses. The 

analytic expressions that we were able to obtain for these two frequency shifts show that 

the spectral shift is relatively small for the refracted pulse but can be quite large for the 

reflected pulse. Moreover, the shifts can be either on the red side or on the blue side of 

the spectrum of the incident pulse, depending on the nature of both the group-velocity 

dispersion and the refractive index change. These spectral shifts are caused by a transfer 

of energy between the pulse and the temporal boundary while the number of photons is 

conserved [3]. Because our temporal boundary is induced by an external source, this is 

not a closed system and energy is not conserved in the pulse. We have also indicated the 

conditions under which an optical pulse experiences the temporal analog of TIR. 

Numerical results confirm all analytical predictions based on the physical concept of 

momentum conservation in the moving frame.  

 An experimental observation of reflection, refraction, and TIR at a temporal 

boundary will be of immense interest. Our estimates show that changes in the refractive 

index across this boundary can be as small as 10–6 for verifying our theoretical and 

numerical predictions. The main issue is how to control the relative speed of the pulse 

with respect to the temporal boundary. One possibility is to use a traveling-wave electro-

optic modulator in which a microwave signal propagates at a different speed than that of 

the optical pulse. A pump–probe configuration in which cross-phase modulation would 

be used to produce a moving temporal boundary may also be possible but will require 

pump pulses of high energies. 
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FIGURES 

 

 

 

 

 

 

FIG. 1 

Evolution of (a) the pulse shape and (b) the spectrum in the presence of a temporal 

boundary at TB = 5 ps (dashed white line) with βB = 0.5 m–1. Time is measured in a 

reference frame that is moving with the temporal boundary. 
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FIG. 2 

Dispersion curves for t < TB (dashed blue) and t > TB (solid green). The shaded region 

shows the spectral extent of the input pulse and the corresponding range of propagation 

constants for t < TB. The slope of the dispersion curve is related to the speed of the pulse 

relative to the traveling temporal boundary. 
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FIG. 3 

 (a) Temporal and (b) spectral evolutions of an optical pulse undergoing TIR at a 

temporal boundary located at TB = 5 ps (dashed white line) with βB = 1.4 m–1. Time is 

measured in a reference frame that is moving with the temporal boundary. 

 


