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We point out that kinetic and Stückelberg mixings that are generically present in the low energy
effective action of axions can significantly widen the window of axion decay constants. We show that
an effective super-Planckian decay constant can be obtained even when the axion kinetic matrix has
only sub-Planckian entries. Our minimal model involves only two axions, a Stückelberg U(1) and
a modest rank instanton generating non-Abelian group. Below the mass of the Stückelberg U(1),
there is only a single axion with a non-perturbatively generated potential. In contrast to previous
approaches, the enhancement of the axion decay constant is not tied to the number of degrees of
freedom introduced. We also discuss how kinetic mixings can lower the decay constant to the desired
axion dark matter window. String theory embeddings of this scenario and their phenomenological
features are briefly discussed.
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INTRODUCTION

Axions or more generally axion-like particles are
among the most recurrent extensions of the Standard
Model. Their defining shift symmetry, originally pro-
posed to solve the strong CP problem [1], turns out to
have far-reaching consequences in many other contexts in
particle physics and cosmology. The axionic shift sym-
metry constrains how they couple to each other and to
other matter perturbatively, namely, solely via derivative
couplings. These properties of axions also make them an
interesting candidate for dark matter and/or the inflaton.
Generic arguments in quantum gravity suggest [2] that
a continuous global symmetry is at best perturbatively
exact. Indeed, the continuous shift symmetry is broken
to a discrete one through the coupling of axions to non-
perturbative instantons, which in turn induce a potential
(in particular, masses) for the axions. Much of the axion
physics is dictated by the axion decay constant, which de-
fines the periodicity of the canonically normalized axions.
Axionic couplings scale inversely with the axion decay
constant, and their masses are determined by the axion
decay constant and the non-perturbative scales involved.
For example, the QCD axion can make up the cold dark
matter of the universe if its decay constant lies within
the window 109 GeV ≤ fQCD ≤ 1012 GeV [3], while the
non-perturbative potential for an axion can realize large
field inflation [4] if the associated decay constant exceeds
the (reduced) Planck mass, i.e., finf > MPl.

Axions are ubiquitous in string theory, as they arise
from dimensional reduction of higher form fields which
appear generically in string compactifications. Their
shift symmetries originate from gauge symmetries in ex-
tra dimensions. Although the origins of various string
axions and their shift symmetries differ, careful studies

surveying all known formulations of string theory [5, 6]
pointed to a universal upper bound for their axion decay
constant f :

f /
g2

8π2
MPl, (1)

with g the coupling constant of the 4D non-Abelian gauge
group to which the axion couples anomalously. This leads
to the folklore that the string axion decay constant can-
not exceed the Planck scale [6] and at the same time re-
veals the tension to attain the QCD axion window [5, 7].

In this paper, we propose a new mechanism to widen
the range of axion decay constants in theories where the
intrinsic axion field range is limited. An implicit assump-
tion behind the aforementioned upper bound is the ab-
sence of mixings among axions, i.e., the eigenbasis for the
axion kinetic terms matches that of the instanton poten-
tial terms. However, it is not uncommon for axions to
mix kinetically and in the presence of Stückelberg U(1)
gauge fields, there are even further mixing effects. Thus,
it is conceivable for the light axion that survives in the
low energy theory to have a field range that differs signif-
icantly from what the original Lagrangian might suggest.

To explore the theoretically allowed window of axion
decay constants, we considered the general multi-axion
Lagrangian and found that the bound in eq. (1) can be
significantly relaxed when mixing effects are taken into
account. We hasten to stress that although our motiva-
tion is partly string theoretical, our results apply gen-
erally to quantum field theories with multiple axions.
More explicitly, for a system of N axions ai charged un-
der M U(1) gauge symmetries through Stückelberg cou-
plings and coupling anomalously to P non-Abelian gauge
groups, the low energy effective action reads as follows,
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Seff = −
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fαβF
α ∧ ?4F

β +

P∑
A=1

1

g2
A
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1

2
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Gij(dai −
M∑
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8π2
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N∑
i=1

riAa
i

)
Tr(GA ∧GA)− 1

8π2

M∑
α,β=1

(
N∑
i=1

siαβa
i

)
Fα ∧ F β + . . .

 . (2)

We choose the convention that the axions ai have a pe-
riodicity of 2π and thus their decay constants are deter-
mined by the kinetic terms, Gij . The matrix fαβ encodes
the coupling constants of and possible mixing among
the U(1) gauge symmetries with gauge potential Aα and
field strength Fα. GA denotes the field strength of the
strongly coupled non-Abelian gauge groups that gener-
ate instanton potentials. The axion kinetic terms exhibit
two types of mixing effects: mixing due to a non-diagonal
metric Gij on the axion moduli space and mixing due to
Stückelberg couplings for charges kiα 6= 0. An additional
form of mixing arises as the axionic directions coupling
anomalously to the non-Abelian gauge groups do not nec-
essarily correspond to the eigenbasis for the potentials.
This is expressed through the integer coefficients riA and
siαβ , for which at least two different coefficients are si-
multaneously non-vanishing. The anomalous couplings
of the axions to the U(1) gauge groups are included for
completeness, but are not expected to contribute to the
axion potentials due to the absence of U(1) instantons
in four dimensions [8]. The . . . denote the possible pres-
ence of chiral fermions and/or generalized Chern-Simons
terms, required to ensure vanishing gauge anomalies [9].
Moreover, due to the presence of the chiral fermions
and/or generalized Chern-Simons terms, the anomalous
couplings of the axions to the gauge instantons remain
U(1) gauge invariant when the axions carry Stückelberg
charges as shown explicitly in section 2.2.1 of [10].

KINETIC AND STÜCKELBERG MIXINGS

To highlight the mixing effects among axions, it suffices
to consider a minimal set-up with two axions (N = 2),
one Abelian and one non-Abelian gauge groups (M =
P = 1). We can drop the indices α and A, and neglect
the anomalous coupling of the axions to the U(1) field
strength. In order to identify the axionic direction eaten
by the U(1) gauge boson through the Stückelberg mecha-
nism and to determine the correct axion decay constants,
we have to perform a set of transformations (SO(2) rota-
tions and rescalings) diagonalizing the kinetic terms for
the two-axion system. A linear combination ζ of the ax-
ions a1 and a2 will form the longitudinal component of
the massive U(1) gauge boson with a Stückelberg mass:

Mst =
√
λ−(k−)2 + λ+(k+)2, (3)

while the orthogonal linear combination ξ remains un-
charged under this U(1). Here, λ± correspond to the
eigenvalues of the axion moduli space metric Gij :

λ± =
1

2

[
(G11 + G22)±

√
4G2

12 + (G11 − G22)2

]
, (4)

and the charges (k+, k−) correspond to the U(1) charges
in the axion eigenbasis diagonalising the metric Gij :

k+ = cos
θ

2
k1 + sin

θ

2
k2, k− = sin

θ

2
k1 − cos

θ

2
k2. (5)

The continuous parameter θ ∈ [0, 2π] encodes the amount
of axion mixing associated to a non-diagonal metric Gij
through the parametrisation:

cos θ =
G11 − G22

λ+ − λ−
, sin θ =

2G12

λ+ − λ−
. (6)

For a diagonal axion metric Gij , i.e. G12 = 0, the U(1)
charges (k+, k−) reduce to the original charges (k1,−k2)
as they appear in eq. (2).

In the unitary gauge, the axion ζ is part of the massive
U(1) gauge boson, and thus only the anomalous coupling
between the axion ξ and the non-Abelian gauge group
prevails [10], yielding an effective axion decay constant:

fξ =

√
λ+λ−Mst

cos θ
2

(λ+k+r2 + λ−k−r1) + sin θ
2

(λ−k−r2 − λ+k+r1)
.

(7)

The axion decay constant fξ exists purely due to the
presence of non-vanishing Stückelberg couplings (ki 6= 0),
irrespective of the occurrence of a non-diagonal metric
Gij on the axion moduli space. Upon integrating out the
massive U(1) gauge boson and the non-Abelian degrees
of freedom, the gauge instanton background generates an
axion-potential for ξ of the usual cosine-type:

Veff(ξ) = Λ4

[
1− cos

(
ξ

fξ

)]
, (8)

where Λ is related to the characteristic energy scale of the
condensate. The process of integrating out the massive
gauge boson occurs in two steps, as explained in detail
in section 2.2.1 of [10]: first, the axion ζ is eliminated
from the effective action by going to the unitary gauge
for the gauge boson. In the unitary gauge, the anomalous
coupling of the axion ζ to the non-Abelian gauge group
vanishes as a consequence of the vanishing anomaly con-
dition. The orthogonal axionic direction ξ then forms the
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remaining axion that couples anomalously to the non-
Abelian gauge instantons, explaining why the effective
potential in (8) solely depends on ξ. In a second step,
the massive gauge boson is then integrated out by virtue
of its equation of motion, giving rise to (Mst-suppressed)
four-point interactions among the chiral fermions. In the
end, the uncharged axion ξ is the only field serving as
the inflaton, ensuring that the inflationary motion occurs
along a gauge-invariant path.

To explore the physical field range of the axion ξ, it
suffices to determine how its axion decay constant scales
with the continuous parameters in a specific region of the
moduli space. For illustrative purposes, let us consider
three regions of the parameter space where the axion de-
cay constant takes super-Planckian values:
Region 1: for small kinetic mixing in the metric,
i.e. θ ≈ 0, the decay constant (7) takes the form:

fξ =

√
G11G22Mst

k1r2G11 − k2r1G22
=

√
G22

√
(k1)2 + ε2(k2)2

k1r2 − ε2k2r1
, (9)

where the continuous parameter ε2 ≡ G22/G11 indicates
the amount of isotropy between the metric eigenvalues.
The decay constant takes trans-Planckian values in the
region of the moduli space where the continuous param-
eter ε asymptotes to

ε2 → k1r2

k2r1
. (10)

Region 2: for perfect isotropy between the diagonal
entries of the metric, i.e. ε2 = 1, and a non-negligible
amount of kinetic mixing, i.e. θ ≈ π

2 , the U(1) charges

(k+, k−) reduce to (k
1+k2√

2
, k

1−k2√
2

). If we assume r1 = r2

for simplicity, the decay constant can be simplified to:

fξ =

√
G11

√
1 + %2

√
(k1)2 + (k2)2 + 2k1k2%2

|(k1 − k2)r1|
√

1− %2
, (11)

where the continuous parameter %2 ≡ G12/G11 measures
the amount of kinetic mixing. In this moduli space re-
gion the decay constant reaches trans-Planckian values
whenever the non-diagonal entries in the metric are of
the same order as the diagonal ones, namely for:

%2 → 1. (12)

Region 3: for intermediary kinetic mixing the range of
the decay constant (7) can be represented through con-
tour plots as functions of the continuous parameters ε
and θ

(
∈ [0, π2 ]

)
as in fig. 1 upon fixing the U(1) charges

ki and the parameters ri. Regions in the moduli space
with fξ > 102

√
G11 are highlighted in white.

While we exploit multiple axions to obtain an effective
super-Planckian decay constant, our mechanism differs
fundamentally from earlier approaches. Unlike N-flation
[11] and aligned natural inflation [12], the enhancement

θ

ε

θ

ε

FIG. 1. Contour plots of decay constant fξ(θ, ε) for 2r1 =
2r2 = 2k1 = k2 (left) and r1 = 2r2 = k1 = 2k2 (right). The
fξ-values range from small (purple) to large (red) following
the rainbow contour colors. Unphysical regions with complex
fξ are located in the black band.

in the physical axion field range we found here is not
tied to the number of degrees of freedom introduced (in-
cluding axions, gauge fields, and any additional fields
needed to ensure consistency of the theory). This can
be seen already in the minimal setup above as an en-
hancement in neither (9) nor (11) requires adjusting the
discrete parameters (e.g. axion charges, axion-instanton
couplings, and the rank of the non-Abelian gauge group)
of the model but rather continuous parameters (i.e. mix-
ing angle θ and ratios ε or % of metric entries) in the
axion moduli space which leave the low energy spectrum
intact. This decoupling of the axion field range enhance-
ment from the low energy spectrum holds generally for
the multi-axion system described by eq. (2) and not just
the minimal setup considered here. In contrast, the en-
hancement in the axion field range scales as ∼

√
N in

N-flation, and as ∼
√
N !nN [13] in aligned natural infla-

tion, with N the number of axions and n ∈ Z the coeffi-
cients for the axion-instanton couplings. The presence of
these light fields generically renormalize the Planck mass
and we expect on general grounds [14] that δM2

Pl ∼ N .
Thus our scenario is minimal in that parametrically fewer
degrees of freedom are needed to achieve the same en-
hancement and so their associated quantum corrections
to the Planck mass are less severe.

Let us end this section by briefly discussing the possi-
bility to lower the effective axion decay constant to within
the dark matter window. If we consider the same con-
figuration as in region 2, but assume that r1 = −r2 and
k1 = k2, the axion decay constant instead reads:

fξ =

√
G2

11 − G2
12√

2|r2|
√
G11 + G12

=

√
G11

√
1− %2

√
2|r2|

, (13)

where the numerator decreases significantly in the
limit (12). Considering moderate values for r2 ∼ O(1 −
10) and

√
G11 ∼ O(1015 − 1017) GeV, a desired decay

constant within the axion dark matter window can be
obtained for moduli space regions with large kinetic mix-
ing effects, i.e. 1−ρ2 ∼ O(10−4−10−8). More generically,
eigenvalue repulsion can be used to lower the decay con-
stant, similar to the Z ′ masses considered in [15–17].
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In summary, by scanning the continuous moduli depen-
dent parameter space for the axion moduli space metric
Gij , we can find regions where the axion decay constant
fξ in eq. (7) takes trans-Planckian field ranges fξ > MPl

and regions where the decay constant falls within the
classical axion decay window 109 GeV ≤ fξ ≤ 1012 GeV.
These regions are mostly uncovered through the pro-
posed kinetic mixing mechanisms in settings with a high
amount of isotropy between the entries in the metric Gij .
Nonetheless, the inclusion of kinetic mixing effects among
axions allows for effective axion decay constants with a
much broader energy window than the one of a single ax-
ion, alleviating the tension between current experimental
bounds and the typical decay constants for string axions.

STRING THEORY IMPLEMENTATION

It is natural to ask if our scenario can be realized in
string theory where axion candidates are abundant. Ax-
ion models with a super-Planckian field range are sensi-
tive to Planck scale physics. Thus, in such cases, a string
theory implementation is not only natural but a necessity.
Here we lay out the criteria that a string compactification
needs to satisfy in order to implement the mechanisms
we proposed above. Closed string axions emerge natu-
rally from the dimensional reduction of ten dimensional
p-forms as summarised in table I, where for concrete-
ness we restricted to four-dimensional (4D) Calabi-Yau
(CY3) orientifold compactifications of Type II superstring
theory [21]. The background-dependence is reflected by

the Hodge-numbers h
(1,1)
± , h(2,1) and h

(2,2)
+ expressing the

number of orientifold-even/odd 2-forms, 3-forms and 4-
forms respectively, and thereby setting the number Na
of axions. De Rahm-duality then associates to every ax-
ion an orientifold-even/odd closed p-cycle γi on the CY3

orientifold such that an axion ai can be defined as:

ai ≡ 1

2π

∫
γi

Cp. (14)

Overview of Type II closed string axions

Type IIA Type IIB
p-form Cp B2 C3 C0 B2 C2 C4

axion ai ba ξk c0 ba ca ρα

Na h
(1,1)
− h2,1 + 1 1 h

(1,1)
− h

(1,1)
− h

(2,2)
+

U(1) D6 on 3-cycle D7 on 4-cycle

TABLE I. Summary of model-dependent axions in Type II
superstring theory on CY3 orientifolds [22]. The D-brane
configuration in the last row indicates which axions acquire
Stückelberg U(1) charges and the origin of such U(1)’s.

The dimensional reduction of the kinetic terms for the
p-forms yields the kinetic terms for the respective axions
whose continuous shift symmetries are remnants of the

ten-dimensional gauge-invariance. Furthermore, the ki-
netic terms for the axions are characterised by a non-
diagonal metric Gij on the axion moduli space, as in
eq. (2), except for the axion c0. The metric Gij de-
pends on the moduli fields appearing in the same four-
dimensional N = 1 supermultiplet as the respective ax-
ions. These moduli have to be stabilised at higher energy
scales for the effective action in eq. (2) to be applicable.

The axions ξk, ca and ρα can be charged under the
U(1) gauge group [23, 24] supported by the appropriate
Dp-brane as listed in table I. The Stückelberg couplings
for the charged axions in eq. (2) are required for anomaly
cancelation by virtue of the generalised Green-Schwarz
mechanism though they can also appear for anomaly free
U(1)’s. The axions ξk and ca are charged under the U(1)
gauge symmetry when the corresponding D-brane wraps
the (6− p)-cycle Poincaré dual to the p-cycle associated
with the axion. For the ρα axions to be charged under
the Abelian gauge group, the D7-brane has to wrap the 4-
cycle Poincaré dual to the 2-cycle supporting an internal
magnetic 2-form flux. The Stückelberg charges ki are
thus directly related to the integer wrapping numbers of
the U(1) D-brane along the internal dimensions.

The anomalous couplings to gauge instantons in eq. (2)
follow naturally from the reduction of the Chern-Simons
action for the D-brane stack supporting the non-Abelian
gauge group [23, 24] . For the axions ξk and ρα to couple
anomalously to the non-Abelian gauge symmetry, it suf-
fices that the corresponding D-brane stack wraps their
associated p-cycles. For the ca axions the D-brane stack
has to wrap the 4-cycle Poincaré dual to the 2-cycle sup-
porting an internal magnetic 2-form flux.

Apart from gauge instantons, string theory also allows
for the presence of D-brane instantons where Euclidean
D-branes wrap p-cycles γi on CY3 while being pointlike
spacetime objects. The instanton amplitude is set by
the action SEp−1

for the Euclidean D-brane, which scales
with the volume Vol(γi) of the wrapped p-cycle:

e−SEp−1 = e−
2π
gs

Vol(γi)−i ai . (15)

The axion dependence in the phase then breaks the axion
symmetry to the discrete shift symmetry ai → ai + 2π,
implying that the moduli space for stringy axions is a
torus TNa equipped with metric Gij . Instanton correc-
tions only contribute to the effective action when their
fermionic zero modes can be saturated upon integra-
tion over the instanton moduli space, e.g. for orientifold-
invariant rigid cycles γi. For Stückelberg charged axions
the D-brane instanton amplitude violates the U(1) sym-
metry and effective contributions to the superpotential
require the presence of U(1) charged fermions whose col-
lective charge cancels the U(1) charge violation by the
instanton to ensure gauge invariance [25]. Such chiral
fermions arise at the intersections of two D-branes in the
bi-fundamental representation under the gauge groups
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supported by the respective D-branes. Which instan-
ton type is the leading non-perturbative contribution and
thereby sets the axion potential, is a model-dependent
consideration. Explicit stringy realisations of set-up (2)
are constructed in [10] using Type IIA with intersect-
ing D6-branes [26] on the toroidal orientifold T 6/ΩR.
A large axion decay constant is realised through certain
isotropy relations among the complex structure moduli,
analogous to the discussion for region 1 in eq. (9).

CONCLUSIONS

In this paper, we propose and demonstrate that kinetic
and Stückelberg mixing effects can widen the axion win-
dow. Our scenario applies generally to field and string
theories with multiple axions so long as the effective ac-
tion in eq. (2) is applicable. In the context of string
theory, our mechanism to lower the axion decay constant
does not invoke large compact cycles, thereby alleviating
the requirement for an intermediate string mass scale [27]
or the utility of field theory axions [28]. Our results
thus open up new possibilities of detecting string ax-
ions through astrophysical, cosmological and laboratory
means. It also allows to reconcile with a high fundamen-
tal string scale, should a detection of primordial tensor
mode points us to high scale inflation. On the other
hand, an enhancement of the axion decay constant to
super-Planckian values through mixings enables us to re-
alize “natural-like inflation” in string theory. Generically,
one expects the leading cosine potential (assumed to be
exact in natural inflation [4]) to receive model-dependent
modifications from higher (or other subleading) instan-
ton effects when the effective axion decay constant be-
comes large [29]. This expectation is in line with the
weak gravity conjecture [18, 19] whose formulation for
multi-axion systems is currently under investigation [20].
Nonetheless, the extended periodicity of the axion is not
expected to be altered by these subleading corrections.
While such corrections are model-dependent and hard to
compute, their presence is suggestive of quantum grav-
ity at work in order to couple the multiple axion system
to gravity. The deviation from a cosine potential could
leave a measurable effect on the inflationary perturbation
spectrum. Quantifying such deviation requires a detailed
understanding of the ultraviolet completion of inflation
and the moduli stabilization mechanism involved. Turn-
ing this around, precise cosmological measurements may
point us closer to the structure of our string vacuum.
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