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We study a one-dimensional quantum problem of two particles interacting with a third one via a scale-

invariant subcritically attractive inverse square potential, which can be realized, for example, in a mixture of

dipoles and charges confined to one dimension. We find that above a critical mass ratio, this version of the

Calogero problem exhibits the generalized Efimov effect, the emergence of discrete scale invariance manifested

by a geometric series of three-body bound states with an accumulation point at zero energy.

In quantum mechanics three identical bosons in three di-

mensions interacting resonantly via a short-range two-body

potential have an infinite tower of bound states, whose en-

ergy spectrum forms a geometric series near the accumula-

tion point at zero energy. This was discovered theoretically

by Vitaly Efimov in 1970 [1] and is known today as the Efi-

mov effect. This effect is a beautiful example of few-body

universality since it is independent of the detailed form of

the interaction potential provided it is tuned to the resonance

(i.e., whenever a zero-energy s-wave two-body bound state

if formed). The Efimov effect has been extended to systems

of distinguishable particles [2–6], liberated from three dimen-

sions [7] and found in other systems [8, 9]. During the last

decade a number of experiments [10–14] with cold atoms near

Feshbach resonances [15] verified various universal aspects

related to Efimov physics— the Efimov 4He trimer has also

been recently observed in [16]— and demonstrated the exper-

imental capability to explore fundamental aspects of few-body

systems in exotic regimes.

From a more general perspective, the most startling fea-

ture of the Efimov effect is discrete scale invariance of the

three-body problem, manifested in both bound and scattering

three-body observables, that originates from continuous scale

invariance of the two-body interaction. It thus appears nat-

ural to us to generalize the Efimov effect to systems whose

two-body interaction is not necessarily short-range and define

it as the emergence of discrete scaling symmetry in a three-

body problem if the particles attract each other via a two-body

scale invariant potential [17].

Motivated by this broader perspective on the Efimov effect,

we study a three-body problem with a two-body long-range

attractive potential of the form

V (r) = − α

2µr2
(1)

with µ being the reduced mass and α the dimensionless cou-

pling constant. The potential (1) is scale invariant and, at

zero energy or for sufficiently small r, where the energy term

can be neglected, in one dimension the two independent so-

lutions of the two-body Schrödinger equation are the powers

r1/2±
√

1/4−α. However, the (inevitable) breakdown of the

1/r2 law at small distances introduces a length scale b, made

explicit by writing the linear combination of the two asymp-

totic solutions in the form

ψ ∼
(r

b

)1/2+
√

1/4−α

−
(r

b

)1/2−
√

1/4−α

. (2)

For the further discussion it is crucial whether α is larger

or smaller than 1/4 [4, 18, 19]. The case α > 1/4 corre-

sponds to the fall of a particle to the center and the discrete

scaling is manifest already in the two-body problem. Here, the

exponents 1/2 ±
√

1/4− α are complex conjugate, the two

terms in Eq. (2) should be treated on equal footing, and b be-

comes an essential parameter, which can never be neglected.

By contrast, the case α < 1/4 has two scale-invariant lim-

its b = 0 and b−1 = 0 where, respectively, only the plus-

branch r1/2+
√

1/4−α or only the minus-branch r1/2−
√

1/4−α

survives in Eq. (2). In practice, these two limits require, re-

spectively, |b| ≪ ξ or |b| ≫ ξ, where ξ is a typical length-

scale in the problem such as the system size, de Broglie wave

length, etc. For instance, in Eq. (2) the minus-branch solution

can be neglected if (b/ξ)
√
1−4α ≪ 1. Thus, the plus-branch

scaling is realized “automatically” by increasing the typical

size of the system, whereas the minus-branch requires a fine

tuning of the short-range part of the potential [20–22]. Phys-

ically, this fine tuning signals the appearance of an additional

two-body bound state emerging from the zero-energy thresh-

old which can be realized using, for example, the Feshbach

resonance technique [15].

As far as the three-body problem with the two-body inter-

action (1) is concerned, Calogero solved it in one dimension

analytically for three identical particles [23] and found contin-

uous scale invariance for all α < 1/4, which implies the ab-

sence of the Efimov effect [24]. In this paper we show that this

conclusion does not hold in general for the modified Calogero

problem – two identical spinless bosons or fermions interact-

ing with a third particle via the potential (1). In addition to

the quantum statistics and the choice b = 0 or b−1 = 0 the

modified problem is parametrized by the two continuous di-

mensionless quantities: α and the mass ratio. Accordingly,

we calculate the critical line separating the Efimov and scale-

invariant regions and describe the nature of the three-body

bound state spectrum in this parameter space.
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The three-body Hamiltonian relevant for our problem reads

H = −
∂2R1

+ ∂2R2

2M
− ∂2r

2m
+ V (r −R1) + V (r −R2), (3)

where R1 and R2 are the coordinates of two identical par-

ticles of mass M and r is the coordinate of the third parti-

cle of mass m. The potential V is given by Eq. (1), where

µ = mM/(M + m) and α denotes the interspecies dimen-

sionless coupling.

A convenient way to solve this problem is obtained using

hyperspherical coordinates. First, we introduce the center-of-

mass and mass-scaled Jacobi coordinates RCM =
[
mr +

M(R1 + R2)
]
/(2M + m), x =

√

µ̃/2(2r − R1 − R2),
y =

√
2µM (R2 − R1), where µ̃ = 2mM/(m + 2M) and

µM =M/2. It is then convenient to define polar (hyperspher-

ical) coordinates x = R cos θ, y = R sin θ with the mass-

scaled hyperradius R =
√
2
∑

imi(ri −RCM )2. The inter-

particle distances in the new coordinates become r − R1 =
R sin(∆ + θ)/

√
2µ, r − R2 = R sin(∆ − θ)/

√
2µ and

R2 − R1 = R sin θ/
√
M , where ∆ = arctan

√

1 + 2M/m.

Accordingly, after separating the center-of-mass motion, the

relative part of the Hamiltonian (3) is written as a two-

dimensional radial problem

H = −∂2R − 1

R∂R +
1

R2
M2

θ (4)

with the hyperangular Schödinger operator

M2
θ = −∂2θ − α

sin2(∆ + θ)
− α

sin2(∆− θ)
. (5)

Two-body scale invariance leads to separability of the three-

body problem in hyperspherical coordinates. The relative part

of the three-body wave function Ψ(R, θ) can thus be written

in the factorized form Ψ(R, θ) = Φ(R)ψ(θ) and the problem

separates into two tasks. First, one finds ψ by diagonalizing

the operator M2
θ

M2
θψ = −s2ψ. (6)

Then, Φ(R) is the solution corresponding to the Hamiltonian

(4) with M2
θ substituted by −s2. This second task is trivially

solved in terms of the Bessel functions J±is, and the onset of

the generalized Efimov effect coincides with the point s2 = 0:

for positive s2 the system is Efimovian and for negative s2 it is

scale invariant. Thus, the problem of determining the critical

mass ratio is equivalent to solving the hyperangular problem

(6) and identifying the zero crossing of s2 as a function of ∆.

We will now discuss this procedure.

The coincidence angles θ = 0, π (M − M coincidence)

and θ = ±∆, π ± ∆ (M − m coincidences) partition the

hyperangular circle into six regions (see Fig. 1). Since two

particles of mass M are identical, the wave function satisfies

ψ(θ) = ψ(−θ) or ψ(θ) = −ψ(−θ), respectively, for bosons

or fermions. In addition, the hyperspherical Hamiltonian is

symmetric under θ → π− θ and the wave function ψ is either

even or odd under this transformation. It is thus sufficient to

FIG. 1. Hyperangular domain partitioning.

solve the angular problem only in the domain θ ∈ (0, π/2).
Moreover, we will assume that the distinguishable particles

are impenetrable. Physically, this is realized by regularizing

the inverse square potential (1) with a short-range potential

that has a strong repulsive core. Due to the interspecies im-

penetrability, sectors I and II in Fig. 1 decouple and can be

addressed separately. In sector I the hyperangular wave func-

tion, ψ(θ), should satisfy the following boundary conditions

for θ = 0 [25]

ψ = 0 fermions,

ψ′ = 0 bosons
(7)

and for θ → ∆−

ψ ∼ (∆− θ)1/2+
√

1/4−α plus-branch,

ψ ∼ (∆− θ)1/2−
√

1/4−α minus-branch.
(8)

The critical mass ratio is determined by solving Eq. (6) in

sector I and is plotted in Fig. 2 (a) and (b) for bosons and

fermions, respectively. We found that s2 is an increasing func-

tion of the mass ratioM/m for any choice of α and boundary

conditions. In addition, we find no zero-energy (s = 0) solu-

tion in sector II that satisfies the proper scale-invariant bound-

ary conditions at the interspecies coincidence point. The wave

function is thus zero in sector II, i.e., the probability to find

the particle of mass m in between the two identical particles

of mass M vanishes.

It should be noted that the modified Calogero problem of

the type (3) is exactly solvable and scale invariant for the plus-

branch under the condition M/m = 1/(1/2 +
√

1/4− α)
[26–28]. The Efimov region corresponds to higher values of

M/m and, since the problem is not solvable, we solve it nu-

merically. We use the Numerov method [29] on a logarithmic

grid (see Ref. [22]). Nevertheless, we also find approximate

analytic solutions for this problem in limiting cases discussed

below.

For the plus-branch the critical mass ratio diverges at α =
1/8. In fact, for α > 1/8 both branches give rise to the

Efimov effect for sufficiently large M/m[30]. Indeed, for
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FIG. 2. (Color online) (a) Critical mass ratio as a function of α for

bosons: upper blue (lower orange) line is the Numerov numerics for

the plus (minus) branch, dashed lines are analytic asymptotes near

α = 0 and α = 1/8 (see text). The shaded regions (i), (ii), and (iii),

denote the regimes in which the Efimov effect does not occur, occurs

for the minus-branch solution only, and occurs for both minus- and

plus-branch solution. (b) same as (a) but for fermions.

.

M/m → ∞ the angle ∆ = π/2 and the hyperangular po-

tential in Eq. (5) reduces to −2α/ cos2 θ. One can see that

the hyperangular problem becomes Efimovian for 2α > 1/4
independent of the quantum statistics of the heavy particles

and the branch choice. This means that the spectrum of M2
θ

is unbound from below with deep bound states localized close

to θ = π/2. As a result, a finite π/2 − ∆ is necessary to

renormalize this potential and bring the ground state energy

−s2 to zero. Quantitatively, for the plus-branch solution in

the vicinity of α = 1/8 we obtain [22]

π

2
−∆ ≈ N e

±π

2
− 2π

√

8α−1 , (9)

where the upper (lower) sign corresponds to the case of bosons

(fermions) and N = 16 exp[−2 − 2
√
2 − H(−3+

√
2)/2] ≈

11.887 with Hn being the harmonic number.

For the minus-branch the spectrum is Efimovian for any

0 < α < 1/4 for M/m ≫ 1 [22]. The less stringent condi-

tion for the Efimov effect in this case can be explained by the

fact that the minus-branch two-body interaction nearly binds

two particles and is, in this sense, more attractive than the

plus-branch interaction with the same α. In fact, the hyper-

angular problem can be solved analytically close to the non-

interacting point α = 0. In Ref. [22] we show that for the

bosonic case

∆− π

4
≈ απ

2
(10)

and for fermions

π

2
−∆ ≈ απ

4
. (11)

The asymptotes (9), (10), and (11) are plotted in Figs. 2 as

dashed lines.

The identified critical mass ratio is calculated using the

wave function ψ(θ) without nodes inside sector I. As one in-

creases the mass ratio, wave functions with increasing number

of nodes will give rise to additional towers of Efimov states.

Now we describe the qualitative nature of the three-body

bound state spectrum.The interaction in Eq. (1) must be reg-

ularized at short distances, see [22]. As the short-range po-

tential depth D0 changes one can tune between a pure plus-

branch (b = 0) and minus-branch (b−1 = 0) solutions. The

nature of the three-body spectrum will depend on which re-

gion in Fig. 2 the system falls into. There are three different

regimes:

• In the region (i), below the orange curve, there is no

Efimov effect for any value of b.

• In the region (ii), between the orange and blue critical

curves, the spectrum behaves similar to the original Efi-

mov problem [1]. By starting from the plus branch so-

lution with b = 0 and increasing the depth D0, three-

body bound states emerge one-by-one from the three-

body continuum as one approaches b−1 = 0. At the

critical point b−1 = 0, where a zero-energy two-body

bound state pops up, an infinite tower of Efimov states

is formed with the Efimov parameter s− (encoding the

geometric factor e2π/s− for the energy spectrum) which

depends on both M/m and α. As one further increases

the depthD0, the trimers disappear one-by-one into the

particle-dimer continuum.

• In the region (iii) the spectrum resembles the one ap-

pearing in the three-dimensional Efimov problem of

particles with unequal scattering lengths [2, 31, 32].

Now both the plus- and minus-branches support Efi-

mov states characterized by the Efimov parameter s+
and s−, respectively, where 0 < s+ < s−. The

energy spectrum contains an infinite number of three-

body bound states close to the zero-energy threshold

for any value of b. The interpolation from the plus- to

the minus-branch can be understood as follows: Near

b = 0 the energy spectrum close to the zero-energy

threshold is controlled by the s+ parameter. As one

approaches b−1 = 0 the virtual dimer state of size of
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FIG. 3. Two identical dipoles and a charge confined in one dimen-

sion.

.

order |b| is formed. As a result, the trimers with ener-

gies below (above) ǫd ∼ −1/µb2 follow the geometric

scaling with the Efimov parameter s− (s+). At reso-

nance b−1 = 0 the geometric spectrum with s− scaling

is obtained. When the depth D0 is increased further, a

two-body bound state is formed and three-body states

with energies below (above) ǫd will also follow the ge-

ometric scaling with the Efimov parameter s− (s+) to

the point where, when away enough from b−1 = 0, the

energy spectrum is again completely controlled by the

s+ parameter.

Can the Efimov effect found in this paper be discovered

experimentally? A promising candidate might be a mixture

of dipoles and charges that are confined to one dimension.

Indeed, the dipole-charge interaction in three dimensions is

given by the scale-invariant anisotropic potential V (r) ∼
cosφ/r2, where φ is the angle between the direction of the

dipole moment and the dipole-charge separation vector. Con-

sider now a system of two identical dipoles of mass M and

dipole momentP and a particle of massm and charge−q con-

fined to a one-dimensional line. Let us also regard the dipoles

as dumbbells with fixed dipole moments as illustrated in Fig.

3. This three-body problem is governed by the Hamiltonian

H = − 1

2M

(
∂2R1

+ ∂2R2

)
− 1

2m
∂2r

−KeqP
[ 1

(r −R1)2
+

1

(r −R2)2

]

︸ ︷︷ ︸

dipole-charge

− 2KeP
2

(R1 −R2)3
︸ ︷︷ ︸

dipole-dipole

, (12)

where the Coulomb constantKe = 1/(4πǫ). If we neglect the

dipole-dipole term, this Hamiltonian maps on Eq. (3) with

α = 2µKePq (13)

and thus gives rise to the Efimov effect provided α < 1/4 and

the mass ratio is above the critical value. The presence of the

dipole-dipole term introduces a length scale ldd ∼MKeP
2 ∼

P
q and bound states of this size. In the Efimov regime the

length ldd provides the high-energy cutoff for the energy spec-

trum. This cutoff should not affect the (geometric) energy

spectrum close to the zero-energy threshold. However, since

our problem is one-dimensional, the dipole-dipole interaction

effectively fermionizes the dipoles since their wave function

is suppressed at R1 − R2 ∼ ldd. Thus, the critical mass ratio

for the Efimov effect should be read off of Fig. 2 (b) rather

than (a) even if the dipoles are identical bosons.

As an example, consider two polar molecules interacting

with an electron. From Eq. (13) the dipole moment of

the polar molecule should satisfy P < Pcr = ea0/8 ≈
0.318Debye, where e is the charge of the electron and a0
is the Bohr radius. Such a system has a large mass ratio,

and, therefore, provided it falls into the region (iii) in Fig.

2 (b), displays Efimov states (without fine-tuning to the mi-

nus branch) which can be detected spectroscopically. For

a typical mass ratio M/m = 105 we find s+ > 1 for

P > 0.281Debye. Moreover, Efimov states could also be

observed if tuning of the dipole moment P is possible. In that

case, near an electron-dipole resonance, dipolar losses should

be enhanced every time a new Efimov state is formed.

A three-dimensional version of the problem may have bet-

ter chances to be realized experimentally and should also

have interesting quantum-chemistry implications. In that case

Pcr ≈ 1.63Debye [33–35]. We consider it as a promising

project and leave it for future studies.
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