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We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of
freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields
in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is
chiral, providing an example of axial gauge fields in three dimensions. As an example of the new
response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon
Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a
test of the chiral anomaly in high energy with three axial vector couplings.

PACS numbers:

Introduction.– The occurrence of Weyl fermions (mass-
less Dirac fermions of definite chirality) in condensed
matter has come always with unexpected phenomena and
new physics. Although having a long tradition [1], the
best examples so far arose in one spacial dimension (Lut-
tinger liquids) [2] or in two (Graphene [3] and the surface
of three dimensional topological insulators [4]). Charged
massless fermions are particularly interesting in three
dimensions: They do not have counterparts in particle
physics and they experience the chiral anomaly [5–9] and
its related physical responses.

The Dirac equation comes from the existence of band
crossings, “Fermi points” in the dispersion relation and
subsequent low energy expansion around them. Com-
ing from a lattice, these Weyl fermions must always arise
in pairs of oposite chirality – or helicity – according to
the Nielsen-Ninomiya theorem [7]. Dirac semimetals [10]
have the crossing points at the gamma point of the Bril-
louin zone and the contribution from the two oposite chi-
ralities cancel the anomaly related responses. The im-
portance of the so–called Weyl semimetals is that, as
happens in graphene, the two chiral partners sit at non
equivalent points in momentum space and the physics of
anomalies is present in full glory. This is why the re-
cent experimental discovery of Weyl semimetals (WSM)
[11–15] is attracting so much excitement [16].

WSM have been named “the 3D graphene”. One of the
most exotic and fruitful aspects of graphene has arisen
from the demonstration that elastic lattice deformations
couple to its electronic excitations in the form of ficti-
tious gauge fields [17]. This fact, first deduced in a tight–
binding model [18] was soon recognized to arise from very
general symmetry considerations [19, 20]. The experi-
mental observation of the predicted Landau levels asso-
ciated to the elastic magnetic fields [21, 22], have given
rise to a whole new field of research called “straintronics”.

In what follows we will show the presence of elastic
gauge fields in WSM. We first make a microscopic deriva-

tion starting from a tight-binding description [18] and
taking the continuum limit around the Weyl points. As
a physical consequence, we will show the presence of an
anomalous phonon Hall viscosity in the WSM with time
reversal symmetry (T ) broken. Similar to the Hall con-
ductivity, the Hall viscosity can be used to classify topo-
logically non-trivial states of matter [23–28]. We will see
that the elastic gauge fields provide a new mechanism for
generating Hall viscosity not previously studied in the lit-
erature. Due the chiral nature of the coupling between
Weyl fermions and elastic degrees of freedom, this new
coupling provides an example of axial vector-fermion in-
teraction with no analogue in high energy physics, and
paves the way for studying the consequences of such cou-
plings in a more general context.
Elastic gauge fields in a model for WSM.– To illustrate
how emergent vector fields associated to elasticity appear
in a WSM phase we can consider the following simple
model of s-, and p-like electrons hopping in a cubic lat-
tice and chirally coupled to an on-site constant vector
field b [29, 30]

H0 =
∑
i,j

c+i

(
itαj − rβ̂

)
ci+j + (m+ 3r)

∑
i

c+i β̂ci +

+
∑
i,l

blc
+
i αlγ5ci + h.c., (1)

where i labels the position Ri and j labels the six next
nearest neighbors aj of length a in the cubic lattice. The

matrices αi and β̂ are the standard Dirac matrices. In
the unstrained situation we will set all the hopping terms
t equal for simplicity. The parameters t, r, and m, repre-
sent, in a tight-binding description, the hopping matrix
elements between s and p states, hopping between the
same kind of states, and the difference of on-site energies
between s and p states, respectively. The vector field
b breaks T as well as the cubic lattice symmetry and
thus the SO(3) rotational symmetry in the continuum
description. Without loss of generality, we will choose
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FIG. 1: (Color online.) Evolution of the band structure of the model given in eq. (1)as a function of the parameter b. For
b3 = 0 the spectrum consists in two pairs of degenerate bands due to time reversal symmetry, (a). When 0 < b3 < m the band
degeneracy breaks down and a high energy sector differentiates from a low energy sector, but the system is still gapfull, (b).
When b3 > m, the low energy bands cross each other at two definite points in the Brillouin zone. At sufficiently low energies,
the system consists in two pairs of Weyl fermions with opposite chirality, (c).

the vector field b to point along the OZ direction. The
model of eq. (1) with b3 = 0 is the standard model to
exemplify the transition from a trivial to a topological in-
sulating phase as a function of the parameters m and r.
The region 0 > m > −2r corresponds to a topological in-
sulating phase and the long wavelength limit around the
Γ point (k = 0) corresponds to an isotropic massive Dirac
system. As it can be seen in Fig.(1) the WSM phase ap-

pears when b3 > m. The spectrum of the Hamiltonian in
eq.(1) consists of two bands crossing at two Fermi points
in the BZ and two bands at higher and lower energies
(Fig.(1,c)). Let us choose the following representation
for the Dirac matrices: α1 = τ0σ1, α2 = τ0σ2, α3 = τ1σ3,
β̂ = τ3σ3, γ5 = τ1σ0, so α3γ5 = τ0σ3. Fourier transform-
ing (1) we obtain:

H0(k) =

(
t
∑
s σs sin(ksa) + (b3 +m(k))σ3 t sin(k3a)σ3

t sin(k3a)σ3 t
∑
s σs sin(ksa) + (b3 −m(k))σ3

)
, (2)

with s = (1, 2), and m(k) = m + 3r − r
∑
j cos(kja). The four-component wavefunction can be written in two-

component blocks (φk, ψk). For energies E � m + b3 we can write φk ' − vk3
m+b3

ψk. Projecting out the high energy
sector represented by φk and expanding around the k = 0 point, we find the following effective two-band model in
the continuum (v = ta):

Heff =
∑
k

ψ+
k

(
vσ⊥ · k⊥ +

1

m+ b3
(b23 −m2 − v2k23)σ3

)
ψk. (3)

The existence of Weyl points λ is met when for k1 =
k2 = 0, the equation b23 − m2 − v2k23 = 0 has real so-
lutions. In this case, the two Weyl points are located

at λ± = (0, 0,±
√

b23−m2

v2 ). Expanding now around these
two points k ' λ± + δk, the low energy effective Hamil-
tonian takes the form of two massless three dimensional
Dirac fermions ψ± separated by the vector λ+ − λ− in

momentum space:

HW =
∑
δk

ψ+
±,δk (vσ · δk⊥ ∓ v3δk3σ3)ψ±,δk, (4)

with v3 = 2v
√

b3−m
b3+m

.

Now we will apply strain to the original tight binding
Hamiltonian and find the modifications it induces in the
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low energy Hamiltonian (4). The strain tensor uij enters
in the tight binding approach through the change of the
hopping parameters t when the lattice is distorted. In the
model of eq. (1), there are two types of corrections to t.
One, similar to that arising in graphene [17], is due to
the change in the bond length. It is isotropic and exists
for all orbitals:

r → rj ' r(1− βujj), (5)

where β is the Grüneisen parameter of the model. The
second contribution affects the hopping between different
orbitals and is associated to a rotation with respect to
the reference frames of neighbouring atoms as described
in [30]. Following this reference, the changes for tj are:

tαj → t(1− βujj)αj + tβ
∑
j′ 6=j

ujj′αj′ . (6)

Inserting these modifications in the original Hamiltonian
(1), we can define the strained Hamiltonian as the sum
of the original Hamiltonian H0 and the strain dependent
part H[uij ]. Projecting out the high energy sector and
expanding around the two nodal points λ±, the strain
dependent Hamiltonian part takes the form

HW
eff [u]± = ±β

√
b23 −m2

∑
k,s=1,2

u3sψ
+
±,kσsψ±,k +

+β
∑
k

2(b3 −m)u33 − r
∑
j

ujj

ψ+
±,kσ3ψ±,k. (7)

We have found that, around the two nodal points, strain
couples to the low energy electronic sector as a vector
field:

Ael1 = β
√
b23 −m2u31,

Ael2 = β
√
b23 −m2u32,

Ael3 = 2β(b3 −m)u33 − βr
∑
j

ujj . (8)

This is the first main result of this Letter.
The low energy effective action in the continuum limit

around the Weyl nodes (λ±) is thus given by

HW =
∑
δk

ψ+
±,δk

(
σ(vδk⊥ ±Ael

⊥)∓ (v3δk3 ±Ael3 )σ3
)
ψ±,δk.

(9)
Similarly to what happens in graphene or other two di-
mensional systems, strain couples to electrons as a chiral
vector field i. e. it couples with opposite signs to the
electronic excitations around the two Weyl nodes. The
specific form of (8) is due to the choice of the vector b
pointing along the OZ axis.
Hall viscosity.– As a physical consequence of the presence
of the elastic gauge fields, we will next show that WSM

have an intrinsic Hall viscosity. In visco-elastic systems
the viscosity tensor is defined as the transport coefficient
relating the stress tensor τij and the time derivative of
the strain tensor urs, τij = ηijrsu̇rs. The antisymmetric
part of ηijrs is a dissipationless coefficient allowed only
when T is broken. In three dimensions rotational sym-
metry must also be broken to get a nonvanishing Hall
viscosity. For axially symmetric systems with broken T
there are two independent components of the Hall viscos-
ity tensor that can be chosen η3231 and η1112 [23]. The
Hall viscosity was first defined as an intrinsic property
of the quantum fluid. When a topologically non-trivial
electronic fluid is coupled to the crystal environment it
will induce a Hall viscosity term in the elastic free en-
ergy of phonons [31]. The electronic contribution to the
field theory for the elastic degrees of freedom can be ob-
tained by integrating out the electronic fields in (9). The
effective action will contain the following term (in units
h̄ = 1):

ΓH [u] =
1

48π2

∫
d4xεµνρσλµA

el
ν ∂ρA

el
σ =

=
β2

48π2a3

(
b23 −m2

t2

) 3
2
∫
d4x (u31u̇32 − u32u̇31) .(10)

From this expression, we can easily read the coefficient
ηH = η3231 of Hall viscosity coming from the presence of
the elastic gauge fields:

ηH =
β2

24π2

1

a3

(b23 −m2

t2

) 3
2

. (11)

This is the second main result of this letter: In the simple
model considered, both T and rotational invariance are
broken by the presence of the constant vector b giving
rise to a Hall viscosity through the elastic vector fields.
This response is rooted on the topological nature of the
material and is universal in the sense that it is directly
related to the Hall conductivity. For a general 3D Weyl
semimetal breaking time reversal symmetry, the anoma-
lous hall effect is characterized by a momentum space
vector called the Chern vector. In our model, this is the
vector λµ separating the two Weyl nodes in momentum
space. The anomalous hall conductivity is given by the

expression: σij = e2

2πcεijkλk, coming from a 3D Chern
Simons term of the form

SCS ∼ νH
∫
d4xλiε

ijklAj∂kAl, (12)

where νH is the 3D Hall conductivity. It is easy to recog-
nize the first term of eq. (10) as the Chern Simons term
associated to the elastic gauge fields. As a rule, what we
have shown is that, any Hall system supporting elastic
gauge fields will automatically present a Hall viscosity
response.
Discussion.– As a proof of concept, we have shown that
WSMs couple to elasticity through chiral vector fields by
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using a minimal tight-binding lattice model. This fact
is not tied to the breakdown of time reversal symmetry,
although we have used a model where the Weyl points
appear by breaking T (a system with broken time re-
versal symmetry has been reported in[15]). A necessary
condition (albeit it might not be sufficient) for having
such elastic gauge fields (technically, to have a vector rep-
resentation of the elastic degrees of freedom at the Weyl
point) is to have the Weyl points sitting at non-equivalent
points of the Brillouin zone (what excludes the Γ point)
[19]. The presence of Weyl points is compatible with T
if the pair of Weyl nodes are related by inversion sym-
metry I [32]. This implies that these elastic gauge fields
will appear in most of the T -invariant systems displaying
Weyl nodes, implying the generality of this phenomenon.

As a direct consequence of this chiral vector coupling
between elasticity an the electronic degrees of freedom,
a new type of Hall viscosity arises in WSMs. In three
dimensions Hall viscosity have been discussed in the lit-
erature associated to two instances only: The topological
insulator phase with T broken and a WSM system in the
presence of torsion [30, 33]. The elastic gauge fields cou-
pled to a topologically non–trivial system defines a third
mechanism that will act on topologically non trivial crys-
tals supporting elastic vector fields.

Several aspects of the viscoelastic response of lattice
topological crystals have been recently analyzed in [30].
Our new contribution to the Hall viscosity, although not
explicitly discussed, could certainly have been worked out
as a part of their general analysis. The examples chosen
there having the Weyl nodes at the gamma point pre-
vented them from finding the elastic gauge fields. The
coupling giving rise to the Hall viscosity in that reference
is linear in momentum and corresponds to the standard
phonon viscosity found in the hydrodynamic approach
[24]. In contrast, the elastic gauge field term described
in our work couples directly to the fermionic current and
is of lowest order in a derivative expansion.

Another important aspect of the present analysis arises
in the connection of the new term with the chiral
anomaly. As we discussed, the elastic vector fields are
chiral in the sense that they couple with oposite signs to
the two chiralities. Moreover, the field λµ is also an axial
field what implies that the coefficient in eq. (10) is as-
sociated to the triangular graph with three axial vertices
(AAA). This triangular graph has an additional symme-
try factor of 1/3 compared to the usual one (one axial and
two vector vertices AVV). We would like to emphasize
that this gives rise to the exciting possibility to test the
AAA anomaly in a condensed matter context. In con-
trast it is generally believed that this type of anomaly
does not lead to physical consequences in high energy
physics [34].

The existence of elastic gauge fields in WSMs extends
the field of ”straintronics” to three-dimensional materi-
als and paves the path for the study of a plethora of

emergent phenomena. Notice that Weyl points are not
an exclusive property of the dispersion relation of elec-
tronic systems. They have also been described in three
dimensional photonic systems [35, 36] what allows to en-
visage the extension of ”straintronics” to photonic media
by controlling the Weyl nodes with deformations through
these elastic gauge fields.
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