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We extend the applicability range of fermionic path integral Monte Carlo simulations to heavier
elements and lower temperatures by introducing various localized nodal surfaces. Hartree-Fock
nodes yield the most accurate prediction for pressure and internal energy that we combine with
the results from density functional molecular dynamics simulations to obtain a consistent equation
of state for hot, dense silicon under plasma conditions and in the regime of warm dense matter
(2.3−18.6 g cm−3, 5.0 × 105 − 1.3 × 108 K). The shock Hugoniot curve is derived and the structure
of the fluid is characterized with various pair correlation functions.
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The development of a first-principles methodology for
warm dense matter (WDM) applications that treats tem-
perature effects consistently is a key component of the
stewardship of plasma science [1, 2]. Indeed, techno-
logical progress in high energy density physics (HEDP)
applications, such as fusion energy [3, 4], shock-wave
physics [5], astrophysical processes [6–8], and plane-
tary [9, 10] and stellar [11] interiors, relies on simulations
for input and guidance. WDM is broadly described as
the HEDP regime between condensed matter and ideal
plasmas, where strong electron correlation and quantum
and ionization effects are all important.
For the low temperature part of the WDM regime, den-

sity functional molecular dynamics (DFT-MD) [12] is an
accurate and efficient first-principles simulation method.
The thermal occupation of electronic states is treated
as a perturbation of the ground state by Fermi-Dirac
smearing [13]. The main drawback of this method is
that it becomes computationally infeasible as electrons
occupy more bands with increasing temperature. Some
alternative DFT-MD-based methods, such as orbital-
free DFT [14, 15] and average-atom models [16], have
made progress on overcoming the thermal-occupation de-
ficiency, but efforts to improve accuracy are still under-
way [17, 18].
Here, we focus on the development of the path integral

Monte Carlo (PIMC) method [19], which naturally incor-
porates finite temperature quantum effects by working
within the many-body thermal density matrix formalism.
The combination with Monte Carlo sampling makes this
approach one of the most appropriate first-principles sim-
ulation techniques for quantum systems at finite temper-
ature, (T ). Since the length of the path scales like 1/T ,
the method becomes increasingly efficient for high tem-
peratures. Electrons and nuclei are often treated equally
as paths but here we treat the nuclei classically because
their zero-point motion is negligible for the temperatures
under consideration.
PIMC simulations with more than two electrons in a

dense system suffer from a fermion sign problem, which

we solve by introducing the the fixed node approxima-
tion [20, 21] that restricts paths to remain in the positive
regions of a trial density matrix, ρT (R,Rt; t) > 0. The
restricted path integral reads,

ρF (R,R′;β) =
1
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where the action, S, weights every path and P denotes
permutations of identical particles. The most common
approximation to the trial density matrix is a Slater de-
terminant of single particle density matrices,
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in combination with the free particle (FP) density matrix,

ρ
[1]
0 (r, r′;β) =

∑

k

e−βEk Ψk(r)Ψ
∗

k(r
′) , (3)

derived from a sum over plane waves, Ψk(r). The latter
is usually converted into Gaussian form [20]. FP nodes
becomes exact in the limit of high temperature. Interac-
tion effects have been introduced to the nodal structure
on the variational level [22, 23].
In previous work [24–29], we have shown FP nodes can

be sufficient to bridge the WDM regime for elements as
heavy as neon. FP nodes work for first-row elements be-
cause they can still describe the occupation of the 1s state
and DFT-MD works well for lower temperatures where
the second shell becomes occupied. In order to simulate
second-row elements with PIMC, one must go beyond
the FP nodal approximation and incorporate the effects
of bound states as we describe below in an application to
silicon.
We chose to study silicon since it is a natural ex-

tension of our original work on carbon and a proto-
type material with relevance in the semiconductor in-
dustry [30], geophysics and planetary science [10], and
astrophysics [11, 31–35]. Silicon has a rich solid phase
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diagram, displaying 11 solid-state phases under pressure,
becoming metallic near 12 GPa [36–38]. A number of
dynamic shock compression experiments have been per-
formed [39–45]. Shock-compressed silicon has been stud-
ied theoretically with several classical [46–49] and one
DFT-MD simulation [50] that investigated pressures up
to 500 GPa and temperatures up to 104 K. Dynamical
properties of shocked silicon plasma states have also been
studied extensively by theoretical approaches [51–55].

We perform standard DFT-MD simulations using the
VASP code [56]. Supercells with 8 atoms were used for
T ≥ 2.5 × 105K where the kinetic energy far outweighs
the interaction energy, and 24-atoms were used at lower
temperatures [29]. Additional details are provided in the
supplementary material [57]. For the PIMC calculations,
we have used our own code CUPID [61]. The Coulomb in-
teraction is introduced through pair density matrices [62–
64]. The nodes are enforced at intervals of 1/8192 Ha,
which means we need between 4 and 2560 time slices for
simulations in the temperature range of 129− 1 × 106K.
It is sufficient to evaluate the pair action only at intervals
of 1/1024 Ha [23].

We began our investigation of localized nodal approx-
imations in PIMC with the relatively simple, proof-of-
concept problem of computing internal energy and pres-
sure of a stationary silicon atom (one nucleus and 14 elec-
trons) in a periodic cell over a wide temperature range.
In Fig. 1, we compared energies from DFT and PIMC
using FP nodes, where we found a discrepancy of 5.2
Ha/atom already at 2 × 106K that increased to 12.6 Ha
at 5 × 105K. We attributed this discrepancy primarily
to the FP nodal approximation, which we have shown to
work well only as long as the second shell is not signifi-
cantly occupied [27].
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FIG. 1: Internal energy and pressure vs. temperature for a
single silicon atom in periodic cell of 5.0 Bohr.

We investigated two approaches to improve upon the
FP nodal approximation. First, we added the bound

eigenstates of the Coulomb potential of the silicon nuclei,
Ψs(r −RI), to the nodal approximation in Eq. 3:

ρ[1](r, r′, β) =

N
∑

I=1

n
∑

s=0

e−βEsΨs(r−RI)Ψ
∗

s(r
′−RI) , (4)

where the number of states, n, needs to be at least 7 in
each spin channel in order to provide at least one bound
state for every electron. We used the efficient formulation
of the Coulomb density matrix put forth in Ref. [62] and
hence refer to this approximation as Pollock nodes. The
1s state (n = 1) has been added to PIMC nodes once be-
fore to simulate dense hydrogen [65]. However agreement
with DFT predictions and experimental results was not
as good as expected because additional approximations
were introduced when the nodes were enforced. Here we
enforce the nodes strictly as outlined in Refs. [20, 21].
The adoption of Pollock nodes reduced the energy

deviation between DFT and PIMC from 12.6 to 2.7
Ha at 5 × 105K. However, the pressure deviations in-
creased from 11 to 31% (Fig. 1). We tried to improve
upon this result by varying the number of bound states
in Eq. 4, testing different time steps, studying vari-
ous numbers of electrons, and finally by developing a
multi-determinental nodal surface in the spirit of quan-
tum chemistry. In the multi-determinantal approach, we
adopted a sum of FP fermion determinants where each
is added to a different bound shell with the appropri-
ate e−βEs weight. However, this approach did not lead
to a significant improvement in the predicted pressure.
This discrepancy led us to abandon the Pollock node ap-
proximation. We concluded that the eigenstates of non-
interacting particles in the Coulomb potential are too
confining for interacting electrons.
In our second approach, we constructed a thermal den-

sity matrix from Hartree-Fock (HF) orbitals that we com-
puted with the GAMESS code [66] and expanded in a
localized basis set (6-31++G). We use again Eq. 4 but
this time the functions Ψs(r) become the HF orbitals,
which are weighted by factors e−βEs where Es is set to
the corresponding HF eigenvalues. Our approach differs
from groundstate HF nodes [67]. With our HF nodal ap-
proximation, we found perfect agreement with the DFT
prediction for the internal energy of the silicon atom
over the entire temperature range under consideration
(Fig. 1). The resulting PIMC energies are consistently
lower than those obtained with other two nodal approxi-
mations, which, as illustrate in the supplementary mate-
rial [57], implies a lower free energy [23] and establishes
HF nodes as the most accurate nodes among the three
approximations considered here. The PIMC pressures
derived with HF nodes agree within the 1 σ error bars for
all temperatures of 7 × 105K and higher. For 5 × 105K,
a small pressure discrepancy remained, but, given the
large improvement over FP and Pollock nodes, we decide
to adopt HF nodes for our many-particle simulations with
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moving nuclei that we discuss for the remainder of this
article.
The evaluation of HF orbitals for many moving parti-

cles adds a non-negligible burden to computation of the
nodes. We vectorized this part of the calculation by eval-
uating the orbitals for many positions at once. We up-
date the inverse of the determinants whenever possible
rather than recomputing it. Nevertheless, when one ion
is moved, all determinants need to be re-evaluated, which
is not the case for FP nodes that are independent of the
ion positions. Despite this additional cost, we were able
to perform PIMC simulations with 8 nuclei and 112 elec-
trons for temperatures of 1 × 106K and above.
We needed to introduce one more methodological de-

velopment. Upon introducing HF nodes into our simu-
lations with moving nuclei, the acceptance ratio for ion
moves rapidly decayed to zero at lower and intermedi-
ate temperatures as electron paths began to sample the
bound states at the nuclei. Because the nodal surfaces
now depend on the nuclear positions, node crossings are
almost unavoidable when an ion is moved. The cross-
ing is almost exclusively triggered by nearby electrons.
The decay in efficiency was so detrimental that we could
not have obtained the smooth g(r) functions in Fig. 2
without the development of multi-particle moves that re-
locate one nucleus and nearby electrons at once. We
needed to design an algorithm that satisfies the detailed
balance requirement [19] and does not rely on any per-
manent pairing of electrons and ions. We introduced a
localization function,

LIj =

∫ β

0

dt |Ψ1s(rj(t)−RI)|
2
, (5)

that assigns a probability of finding electron paths, rj(t),
near ion, I. Adopting concepts from the permutation
sampling in Ref. [19], we multiply these probabilities to
construct a table that contains all moves of one ion with
up to four electron paths including those that permute.
Because LIj is a very localized function, the number of
significant entries is fairly small so that the table can be
constructed efficiently. Once a particular move has be
selected from the table, we shift the entire group to a
new location within a box of 0.5 Bohr without otherwise
changing their paths. This leaves the function LIj un-
changed within the group, which means detailed balance
can be satisfied by adopting a particularly simple expres-
sion for the acceptance ratio: the sum of table entries for
the new location divided by that for the original coor-
dinates. This procedure led to very efficient ion moves.
To change internal coordinates of electron paths, we keep
relying the on single and multi-electron moves [19].
Figure 3 and supplementary Tab. S1 [57] summarize

our equation of state calculations. For density interval of
1 to 8-fold the ambient density of 2.329 g cm−3, PIMC
simulations with HF nodes were performed for a temper-
ature range of 129−2 × 106K and DFT-MD simulations
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FIG. 2: The top two panels compare the nuclear pair correla-
tion functions from PIMC and DFT-MD at various tempera-
tures. The middle panel shows the integrated nucleus-electron
pair correlation function, N(r), computed with PIMC. Re-
sults are compared with an isolated ion in order to estimate
the ionization state of the plasma. The two lowest panels dis-
play the electron-electron pair correlation functions for pairs
with parallel and opposite spins. All results are for 4-fold
compression.

for 2 − 0.05 × 106K. At 2 × 106K, both methods yield
consistent thermodynamic and structural properties de-
spite the fact that both techniques involve very different
concepts and approximations. The predicted internal en-
ergies deviate by up to 5 Ha/atom and the pressure by up
to 4%. A difference of 5 Ha/atom would be equivalent to
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FIG. 3: Pressure-density conditions of our PIMC and DFT-
MD simulations. The blue line shows the shock Hugoniot
curve.

a 2.5% difference in the ionization fraction of the second
shell. We attribute these deviations to a combined effect
of three approximations: the groundstate DFT exchange-
correlation functional, the frozen-core DFT pseudopoten-
tial, and our localized nodes in PIMC. While it is difficult
to disentangle the errors due to these approximations, we
anticipate that the discrepancies will be reduced further
when both methods are improved in the future. Fig-
ure 4 illustrates that the deviations between PIMC and
DFT-MD are small compared to the error in the De-
bye model. We only plotted excess quantities relative to
a fully ionized plasma model because the total internal
energy varies by over 10 000 Ha/atom in the parameter
range of consideration.

Good agreement between PIMC and DFT-MD is found
for the nuclear pair correlation shown in Fig. 2. With
PIMC we were also able to derive the integrated nucleus-
electron pair correlation function, N(r), that measures
how many electron reside on average within a radius, r,
from a nucleus. Comparing the information at small r
with results for isolated ions, we can estimate the degree
of ionization in the plasma. For temperatures of 1, 2,
and 4 × 106K, we estimate the average charge of the
silicon ions to be +6, +8, and +10 respectively. At higher
temperature the 1s states becomes partially ionized also.

The electron-electron pair correlation functions in
Fig. 2 yield strong positive correlations, which under-
lines that multiple electrons are bound to one nucleus.
As the temperature is increased, the positive correlation
diminishes and eventually even the negative correlations
between electrons with parallel spins at small r is re-
duced.

Finally we derive the principal shock Hugoniot [68].
Under shock compression, a material changes from a
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FIG. 4: Internal energy and pressure for a silicon plasma at
a density of 9.316 g cm−3 are shown versus temperature. We
plot the excess quantities relative to a fully ionized noninter-
acting plasma.

initial state with internal energy, pressure, and volume
(E0 = −289.166Ha/atom, P0=1 bar, V0 from ρ0 = 2.329
g cm−3) to a final state denoted by (E,P, V ) that we can
predict theoretically. The shock compression ratio, ρ/ρ0,
is controlled by interaction effects and by excitations of
internal degrees of freedom. In Fig. 3, a maximum com-
pression ratio of 4.99 is reached for 1.6× 106K where
approximately 7 of 14 electrons have been ionized. A
second compression maximum of 4.95 is predicted to oc-
cur at 8.3× 106K, which is caused by the ionization of
the 1s state. As we have seen for neon [29], the temper-
ature is too high for this maximum to be studied with
DFT-MD. Therefore a combined PIMC and DFT-MD
approach is needed to study all features of the principal
Hugoniot curve.

By constructing a thermal density matrix with HF or-
bitals for the purpose of computing fermion nodes, we
were able to perform PIMC simulations with heavier
elements than was possible before. Through the opti-
mized evaluation of such nodes and the adoption of multi-
particle Monte Carlo moves we were able to put together
an efficient algorithm and derive the equation of state
of silicon plasmas. At lower temperature, we add results
from standard DFT-MD simulations. By combining both
techniques, we provide a first-principles treatment for all
second-row elements in the regime of warm dense matter
and for plasma conditions.
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