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We calculate the spin-independent scattering cross section for direct detection that results from the
electromagnetic polarizability of a composite scalar “stealth baryon” dark matter candidate, arising from
a dark SU(4) confining gauge theory – “Stealth Dark Matter.” In the nonrelativistic limit, electromagnetic
polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section
for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section
for composite dark matter theories with electromagnetically charged constituents. We carry out lattice
calculations of the polarizability for the lightest “baryon” states in SU(3) and SU(4) gauge theories using
the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4)
to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for
extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown
to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is
from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant
uncertainties in the cross section remain due to the more complicated interaction of the polarizablity
operator with nuclear structure, however the steep dependence on the dark matter mass, 1/m6

B , suggests
the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches
for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent
probes of stealth dark matter.

PACS numbers: 11.15.Ha, 12.60.-i, 95.35.+d

Introduction – Despite remarkable advances in direct
detection experiments [1–4], a conclusive signal of nuclear
interactions with dark matter (DM) remains elusive. These
experiments, which are sensitive to nucleus-DM cross sec-
tions at or below 10−45 cm2 per nucleon, have already ex-
cluded large classes of interactions and models, and are
now actively probing Higgs boson exchange [3, 4].

Composite DM, which arises as a neutral bound state
of a strongly-coupled gauge force (for early work, see [5–
9]), has sparked multiple recent lattice calculations [10–
17]. If its constituents are electromagnetically charged,
the DM will interact with standard model (SM) nuclei via
photon exchange, with the cross section suppressed by a
momentum-dependent electromagnetic form factor. Ex-
panding at small momentum transfer, one can obtain a se-
ries of effective operators describing the interaction: the
dimension-5 magnetic moment, dimension-6 charge ra-
dius, and dimension-7 polarizability are the leading opera-
tors [18–20]. Symmetry considerations can give models in
which the first two operators are identically zero [21, 22].

Scattering due to electromagnetic polarizability remains,
giving a lower bound on the direct detection cross section
for a composite DM particle with charged constituents.

We will focus here on a particular composite DM model,
“stealth dark matter” [23], in which the DM is a scalar
“stealth baryon” composed of dark fermions that trans-
form under an SU(ND) theory with ND even 1. In this
model, electroweak symmetry breaking proceeds through
the SM Higgs mechanism. The dominant modes of inter-
action with the SM are the polarizability operator and di-
rect Higgs boson exchange. The latter was studied in some
detail in [14, 23], placing bounds on the allowed dark mat-
ter coupling to the Higgs boson. In this work we study the

1 We note that our results do not apply to mesonic bound states, which are
used for several other models of composite dark matter in which the DM
candidate is a pseudo-Goldstone boson [10, 21, 22, 24–27]. Lattice calcu-
lations of mesonic polarizabilities similar to those we describe here could
be undertaken for those models.
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polarizability, which unlike the Higgs interaction has no
adjustable parameters, but rather is completely determined
by the strong dynamics once the gauge group and matter
content are specified.

SU(4) baryons and polarizabilities – A full construc-
tion of the stealth DM model is given in [23]; here we
briefly summarize the relevant details. The dark sector con-
sists of an unbroken SU(4) gauge theory, which contains
bosonic baryonic bound states made up of four constituent
fermions. The DM candidate itself is a scalar made up of
two pairs of fermions which are degenerate in mass and
carry equal but opposite electric charges of ±1/2. Hence,
there is no magnetic moment or charge radius, leaving just
the electromagnetic polarizability as the dominant interac-
tion with photons.

Previous estimates of the polarizability of a composite
scalar have led to direct-detection cross sections on the or-
der of 10−48 cm2 [20], approaching the interaction strength
at which background neutrinos are expected to contaminate
the DM recoil signal. However, the estimates were based
on semi-classical calculations of a strongly-coupled inter-
action, and so have uncontrolled uncertainties.

Additionally, due to how internal electric charges are
correlated, the polarizability of bosonic 4-fermion baryons
may differ appreciably from QCD-based estimates. In one
limit where the internal constituents are uncorrelated, the
polarizabilities are expected to be comparable. However,
if alternate flavors tend to form pairs based on their Pauli
statistics, the 4-fermion baryon polarizability would be
derivative-suppressed compared to the 3-fermion baryon
(i.e. two dipoles vs. one dipole and one charge). In order
to quantify this effect, we perform lattice calculations for
both the SU(3) and SU(4) baryon polarizabilities.

Polarizability and Direct Detection – The electric po-
larizability of the scalar baryonic composite DM field B
with mass mB can be written as an effective operator of
the form

OF = CFB
∗B F µαF ν

αvµvν (1)

where Fµν is the electromagnetic field strength tensor,
vµ = (1, 0, 0, 0) in the static limit, and CF is the polariz-
ability with mass dimension−3 in the nonrelativistic limit.
Only the electric polarizability is considered since the mag-
netic polarizability is expected to be suppressed [28]. This
is a two-photon vertex, so that the scattering off of nuclei
will involve a virtual photon loop. Because this operator
is induced at a high scale (roughly the dark confinement
scale ΛD ∼ mB), it is expected to generate other interac-
tions with SM particles when the appropriate effective field
theory matching and running down to the nuclear scale are
carried out [29–32]; in fact, an explicit treatment for the
polarizability operator is given in [33]. Although the ef-
fects of the additional induced operators are not negligible
in general, we find that they are small compared to the un-
certainties (particularly from nuclear physics) and so we
will omit them.

From the interaction shown above, the coherent DM-
nucleus scattering cross section (per nucleon) is given by

σnucleon(Z,A) =
µ2
nB

πA2

〈∣∣CFfAF ∣∣2〉 , (2)

where mn is the nucleon mass, µnB = mnmB/(mn +
mB) is the reduced mass, (Z, A) are the atomic and mass
numbers of the target nucleus, and the angular brackets rep-
resent the momentum-averaged form factors for heavy DM
candidates in a given experiment [33].

The primary source of systematic uncertainty is on
the nuclear physics side of the calculation – evaluat-
ing the non-perturbative nuclear matrix element, fAF =
〈A|F µνFµν |A〉. Various attempts to perturbatively esti-
mate this matrix element have been performed with varying
levels of complexity [33–35]. But, the matrix element also
has nontrivial excited-state structures that likely require a
fully non-perturbative treatment. This matrix element is
similar to those needed for double-beta decay experiments,
estimates for which have substantial variation [36, 37]. Un-
til a more accurate extraction of this matrix element is per-
formed, we will use dimensional analysis arising from non-
relativistic loop momenta counting,

fAF ∼ 3Z2α
MA

F

R
, (3)

where R = 1.2A1/3 fm, as used in the double beta de-
cay context, α is the fine-structure constant, and MA

F is a
dimensionless parameter. With the factor of 3 in Eq. (3),
our expression approximately matches [33, 34] for heavy
nuclei when MA

F ' 1. To allow for an order of mag-
nitude uncertainty in the nuclear matrix element, we take
1/3 < MA

F < 3, although a detailed nuclear structure
extraction would be needed for a more precise estimate.

Background field method – In order to extract the elec-
tric polarizability from the lattice, the background field
method is employed, as described in Ref. [38, 39]. The
essence of this method is to measure baryon two-point cor-
relation functions in the presence of a uniform electric field
E . Working in Euclidean space, the background field in-
duces a quadratic Stark shift in the mass of the SU(4)
ground-state baryon,

EB,4c = mB + 2CF |E|2 +O
(
E4
)
, (4)

where CF is the desired polarizability2, as defined in
Eq. (1).

Due to the scalar nature of the SU(4) baryon ground
state, this relation is equivalent to what one would expect
for mesons. For comparison we also study the fermionic

2 The electric polarizability of the neutron αE is more commonly defined in
terms of the induced dipole moment ~d = 4παE

~E , giving a quadratic Stark
shift of ∆En = 1

2
~d · ~E = 2παE |E|2. In our notation αE = CF /π.
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SU(3) baryon, whose energy shift contains an additional
contribution from the non-zero magnetic moment µB [39],

EB,3c = mB +

(
2CF −

µB
2

8m3
B

)
|E|2 +O

(
E4
)
. (5)

For the SU(3) theory, we must therefore determine µB as
well in order to extract CF from the background field de-
pendence.

The background field method is implemented following
Refs. [38, 39] where the uniform background field is in-
cluded by multiplying the unitary gauge links by two phase
terms, chosen so that the field is oriented in the ẑ direction.
Quantization of the uniform background field on a torus
restricts the available field strengths to values

E/a2 =
2πen

|qlow|NtNs

, (6)

where a is the lattice spacing, e is the electromagnetic cou-
pling, Ns and Nt are the number of spatial and temporal
lattice sites respectively, and qlow is the lowest common
denominator of the charges (for SU(3), qlow = 1/3; for
SU(4), qlow = 1/2).

For convenience we define a rescaled, dimensionless
background field by Ẽ = (ea2)−1E . We will analyze
our lattice results using Eqs. (4)-(5) with all quantities re-
placed with their rescaled, dimensionless counterparts, all
of which will be denoted with a tilde:

mB = m̃B/a, (7)

CF = 4παa3C̃F , (8)
µB = 4παµ̃B. (9)

Lattice details and fitting – The lattice calculations are
done using the Chroma software package [40]. We use the
plaquette gauge action with unimproved Wilson fermions.
The gauge configurations are quenched N3

s ×Nt = 323×
64 lattices (20000 heat-bath updates, 200 configurations
separated evenly). For SU(4) we choose β = 11.028
and for SU(3) β = 6.0175 following [41]. Fermionic
propagators are calculated for two different masses at each
ND value (κ = 0.1554, 0.15625 for ND = 4 and κ =
0.1537, 0.1547 for ND = 3), chosen such that the ratio
of the pseudoscalar to vector meson masses mPS/mV =
0.77 and 0.70 are matched [14, 41].

Background field measurements are performed at six
field values [n = 0, ..., 5, see Eq. (6)] for both ND = 4
and ND = 3, with correlation functions measured us-
ing 40 evenly separated sources in (x, y) along the t =
z = 0 plane. Each zero and non-zero field value has 8000
measurements. All two-point correlation functions are fit
over the range t ∈ [4, 28] using fully correlated, multi-
exponential fits including three excited states.

For ND = 4, the two-point baryonic correlation func-
tion in background field Ẽ takes the form

CB(t, Ẽ) ∼ Z(Ẽ) exp
[
−tẼB(Ẽ)

]
(10)

ND mPS/mV m̃B αC̃F α2C̃′
F µ̃B µ̃′

B χ2/dof

4 0.77 0.98204(93) 0.1420(56) -0.089(29) — — 0.7/3

0.70 0.88805(113) 0.1514(106) -0.142(68) — — 4.8/3

3 0.77 0.69812(51) 0.2829(127) -0.177(45) -6.87(26) 714(103) 3.0/7

0.70 0.61904(59) 0.2829(81) -0.165(24) -5.55(18) 396(78) 13.4/7

TABLE I. Results for the polarizabilities and magnetic moments
of the baryonic composites of a strongly-coupled SU(ND) theory,
in lattice units.

at large t. Results for ẼB(Ẽ) are then fit to Eq. (4). We in-
clude higher-order contributions from the background field
following [39],

C̃F (Ẽ) = C̃F + C̃ ′F |Ẽ |2. (11)

The analysis forND = 3 is complicated by the contribu-
tion of the magnetic moment µ̃B to the baryon self-energy.
Following [39], we make use of the boost projections

P± =
1

2
(1± iγ3γ4) , (12)

and the boosted correlators

C±B (t) = 〈B̄(x, t)P±B(0, 0)〉E
= Z±(Ẽ) exp

[
−tẼB(Ẽ)

]
. (13)

The boost-projected amplitudes Z± contain equal and op-
posite contributions from the magnetic moment, which we
isolate by combining them in the ratio

Zr ≡
Z+(Ẽ)− Z−(Ẽ)

Z+(Ẽ) + Z−(Ẽ)
=
Ẽµ̃B(Ẽ)

2m̃2
B

. (14)

A simultaneous fit of ẼB to Eq. (5) and the amplitude ra-
tio in Eq. (14) allows us to determine both C̃F and µ̃B .
To extract the polarizability C̃F we use a fully correlated
quadratic fit following Eqs. (4)-(5). Once again we incor-
porate quadratic terms to both C̃F [as in Eq. (11)] and µ̃B ,

µ̃B(Ẽ) = µ̃B + µ̃′B|Ẽ |2. (15)

The polarizability results for both SU(4) and SU(3) are
presented in Table I, and results for the energies and the
ratio Zr vs. background field for the mPS/mV = 0.70
ensembles are plotted in Fig. 1.

Constructing the dimensionless product αC̃F m̃3
B (as

needed for the DM cross section), we find that the SU(4)
polarizabilities are larger than SU(3) by about 50%. Thus,
we find the SU(3) and SU(4) polarizabilities to be compa-
rable when normalized to the baryon mass. Of course, the
baryon mass itself scales proportional to ND; if we were
to set the scale using a quantity such as the string tension
which does not scale with ND, then the SU(3) polarizabil-
ity would be larger.

The effect of the quenched approximation, in which dy-
namical fermion loops are omitted from the lattice calcu-
lation, is not straightforward to estimate. However, the ef-
fects of such loops are expected to be suppressed with large
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FIG. 1. The ground state energy (in lattice units) vs. applied elec-
tric field E for SU(4) baryons (top) and SU(3) baryons (middle),
and ratio of projected SU(3) correlators vs. E (bottom). Their re-
lations to the magnetic moment and polarizabilities are presented
in Eqs. (4), (5) and (14). Results shown are for the ensembles
with mPS/mV = 0.70.

ND and heavy fermion mass; we note that even for QCD
with its much lighter fermions, the effects of quenching are
generally at most of order 10% [42].

Our calculations are performed at a single lattice spac-
ing and volume, both of which can lead to additional
systematic effects. We expect all of these corrections to
be small relative to the order of magnitude uncertainty
taken for the nuclear matrix element MA

F . As a cross-
check, we note that the neutron polarizability from the
PDG [43] gives CFm3

n ' 0.36 at the QCD physical ra-
tio mPS/mV = 0.18, while our SU(3) lattice simulations
give CFm3

B ' 0.84 at mPS/mV = 0.70. These results
are broadly consistent with the expected scaling of the po-
larizability and baryon mass with mPS .

Direct detection cross sections – To relate the dimen-
sionless lattice results to the dimensionful DM mass, mB ,
that we vary continuously in order to scan the parameter
space of the theory, it is most convenient to give units to
the lattice spacing a = m̃B/mB . Along with Eq. (8), this
leads to the physical value of the polarizability

CF = 4πα

(
m̃B

mB

)3

C̃F . (16)

Putting everything together, the spin-independent cross
section written as the conventional per nucleon rate for a
nucleus with (Z, A) from Eq. (2) becomes

σnucleon(Z,A) =
Z4

A2

144πα2µ2
nB(MA

F )2

m6
BR

2
[αm̃3

BC̃F ]2 ,

(17)
where we use our lattice results in Table I to evalate the
factor in square brackets. We emphasize that, unlike Higgs
exchange, the cross section per nucleus scales as Z4 and
notA2, and so the cross section per nucleon must be calcu-
lated for each nucleus separately in order to compare with
experiment. The strongest bound on the spin-independent
direct detection scattering rate is from LUX [1]. In Fig. 2,
we show the scattering cross section per nucleon for xenon,
and compare with the LUX bounds. We plot only the
ND = 4 case here, as the ND = 3 baryons are already
excluded up to ∼ 20 TeV in mass by the LUX bounds
through their magnetic moments [12].

Discussion – Our lattice results have allowed us to
calculate the spin-independent scattering cross section of
SU(4) stealth DM through polarizability, which we com-
pare against the LUX constraints in Fig. 2. In units of the
stealth baryon mass, we find that the SU(4) polarizabil-
ity is somewhat larger than that of an SU(3) baryon by
about 50%, strongly disfavoring the possibility that the po-
larizability might be suppressed for baryons in even-ND

gauge theories. The numerical similarity of SU(3) and
SU(4) baryon polarizabilities hints that this quantity may
be largely independent of ND in this fermion mass range
to first approximation, which would suggest our direct-
detection predictions may well generalize for larger ND.

We find DM masses less than about 200 GeV are ex-
cluded, while the DM mass range 200-700 GeV could be
probed by future experiments before reaching the neutrino
background [44]. Currently, the strongest lower bound on
the DM mass arises indirectly from the constraints on the
lighter electrically-charged mesons that can be produced
and decay promptly in collider experiments. Using our
results [23], we estimate that DM masses below about
280 GeV are excluded given the LEP II bounds on the
pseudoscalar mesons for ND = 4 and the fermion masses
considered here.

It is remarkable that a composite DM particle with a
weak-scale mass, composed of dark fermions charged un-
der the weak and electromagnetic interaction, can never-
theless be safe from both direct detection constraints and
the LEP II constraint once mB

>∼ 300 GeV. This sug-
gests there is a serious opportunity for future direct detec-
tion experiments to probe the model. Given that the scat-
tering cross section per nucleon scales as Z4/(A2R2) in
Eq. (17), the experiments with the largest nuclei are often
more sensitive, i.e., xenon is 3.4 times more sensitive than
argon if both experiments reach the same limit on the (con-
ventional) spin-independent scattering per nucleon through
Higgs exchange. Comparison of positive results from sev-
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eral experiments can thus provide a clear way to distinguish
stealth dark matter interacting via polarizability from ordi-
nary WIMPs interacting via Higgs boson exchange, which
will give cross sections simply scaling as A2.

With our lattice calculation of the dark matter polariz-
ability in this model, the dominant remaining uncertainty
stems from the treatment of the non-perturbative nuclear
matrix element in Eq. (2), which is similar to the matrix el-
ements required for double beta decay. A significant source
of uncertainty is, for example, the presence of excited states
in Xe-129 and Ge-73 that have energies of 30 and 15 keV,
which will be probed by the loop in the cross section calcu-
lation (typical momenta exchanges are roughly at the MeV
scale). These resonances could appreciably change the re-
sulting cross section, though the steep dependence on the
dark matter mass suggests only a modest equivalent shift
of the DM mass.

The brightest opportunity for stealth dark matter discov-
ery may fall within the domain of the Large Hadron Col-
lider (and future colliders). Meson phenomenology is very
promising, since charged mesons can be produced through
electroweak processes and decay completely into SM par-
ticles. In contrast, production of the stealth baryon is rare,
since it is considerably heavier than the mesons and would
have form factor suppression. This implies the standard
missing energy signals that arise from DM production and
escape from the detector are rare.

Finally, there are many avenues for further investiga-
tion of stealth dark matter, detailed in [23]. One vital is-
sue is to better estimate the abundance. In the DM mass
regime where stealth DM is detectable at direct detection
experiments, the abundance of stealth dark matter can arise
naturally from an asymmetric production mechanism [23]
that was considered long ago [7–9] and more recently re-
viewed in [45]. If there is indeed an asymmetric abundance
of bosonic dark matter, there are additional astrophysical
consequences [46–48] that warrant further investigation to
constrain or probe stealth DM.
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