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One possible channel for black hole formation is the collapse of a rigidly rotating massive neutron
star as it loses its angular momentum or gains excessive mass through accretion. It was proposed
that part of the neutron star may form a debris disk around the black hole. Such short-lived massive
disks could be the sources of powerful jets emitting cosmological gamma-ray bursts. Whether the
collapse creates a disk depends on the equation of state of the neutron star. We survey a wide
range of equations of states allowed by observations and find that disk formation is unfeasible. We
conclude that this channel of black hole formation is incapable of producing powerful jets, and
discuss implications for models of gamma-ray bursts.

A canonical mass of neutron stars born in supernova
explosions is M ≈ 1.4M⊙. The distribution of M around
1.4M⊙ might, however, extend above 2M⊙, especially if
the neutron star is born spinning fast, with a period ap-
proaching the minimum (“breakup”) Pspin ∼ 1 ms. The
additional centrifugal support allows a stable hydrostatic
configuration with mass M that would be forbidden for
non-rotating stars.
Neutron stars in binary systems have additional

chances to gain mass through accretion. The two most
massive known pulsars are in binary systems, although
not currently accreting. If future accretion is capable
of spinning up these stars to Pspin ∼ 1 ms, they could
stably increase their mass above the maximum mass for
non-rotating neutron stars.
Such rigidly rotating centrifugally supported “supra-

massive” neutron stars (SMNS) may also be created in
mergers of neutron star binaries. Recent observations of
≈ 2M⊙ pulsars, J1614-2230 and J0348+0432 [1, 2], in-
dicate that the equation of state (EOS) of dense nuclear
matter is relatively stiff at several times the nuclear satu-
ration density, and therefore some mergers may initially
result in a stable object supported by pressure and fast
rotation [e.g., 3]. Numerical simulations show that the
object will initially rotate differentially [4–8], but that
solid body rotation will be rapidly established following
outwards transport of angular momentum via magnetic
stresses and gravitational waves. The timescale for dif-
ferential rotation to be removed could be as short as tens
of ms [9], and will almost certainly be much shorter than
10 s (e.g., [10]). The heat stored in the merger product
is also mostly lost to neutrino emission within seconds
(e.g., [11]).
The SMNS is fated to collapse to a black hole. Its

lifetime is controlled by the eventual loss of angular mo-
mentum (spindown-induced collapse) or excessive mass
growth (accretion-induced collapse). The collapse is as-
sociated with a huge release of gravitational energy and
could produce a bright transient event — a burst of elec-
tromagnetic radiation, such as a cosmological gamma-ray
burst (GRB).
This GRB trigger is plausible if the equatorial part

of the neutron star is not immediately swallowed by the
black hole but forms a compact, massive, centrifugally
supported disk around it. Jets of hot plasma and radi-
ation are expected to emerge from the debris disk and
power the burst (e.g., [12]).
In the merger scenario, the SMNS eventually collapses

due to its gradual spindown, which removes the ro-
tational support in minutes to hours. The spindown
timescale depends on the magnetic field of the merger
product, which is likely amplified to B ∼ 1015 G dur-
ing the merger [13–15]. This implies a moderate delay
of the collapse-powered burst following the gravitational
waves that are emitted during the merger and hopefully
detected by Advanced LIGO [16, 17].
The goal of this Letter is to assess if the key condition

for this burst scenario — a massive debris disk after the
collapse — can be satisfied. The structure of the SMNS
and hence the outcome of its collapse are controlled by
the EOS of the dense nuclear matter P (ρ). Available gen-
eral relativistic simulations of the collapse do not show
disk formation [18, 19]. These simulations, however, im-
plemented only simplified EOS. In particular, [18] used
the polytropic P ∝ ρ1+1/n with index n ≤ 2, and found
that less than 10−3M⊙ remains outside the black hole at
the termination of the simulation, comparable to their
numerical resolution. They also found that for an ex-
tremely soft EOS (with n = 2.9 and 3) disks can form,
however such EOS are incompatible with observations of
neutron stars. The remaining open possibility is that a
different form of the EOS could lead to disk formation,
e.g. soft at high densities (which gives a compact inner
core — the seed for a future black hole) and stiff at lower
densities (which gives an extended outer core with a high
angular momentum).
In this Letter we explore a wide range of EOS in search

for one that could possibly give a debris disk. Instead of
carrying out full-fledged and computationally expensive
hydrodynamic simulations of SMNS collapse, we employ
a simple method. We analyze the equilibrium hydrostatic
configuration prior to the collapse and check if it satisfies
a necessary condition for formation of a debris disk after
the collapse.
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Condition for Disk Formation.− A stringent criterion
on disk formation can be derived by assuming that all but
an infinitesimal amount of the SMNS’s mass and angular
momentum are inherited by the newly formed Kerr black
hole. Matter at the SMNS equator has the largest spe-
cific angular momentum, je, and hence is the most likely
to form a disk. The angular momentum is conserved dur-
ing collapse, as long as magnetic and viscous torques are
negligible and the spacetime remains axisymmetric. The
centrifugal barrier will stop the equatorial matter from
plunging into the horizon if je exceeds the specific an-
gular momentum of the inner-most stable circular orbit
(ISCO) in the Kerr metric of the nascent black hole,

je > jisco(a) ⇒ disk formation is possible. (1)

Note that jisco depends on the spin parameter a =
Jc/GM2 where J is the angular momentum inherited
by the black hole from the SMNS. A similar criterion has
been employed previously to the collapse of supermassive
gas clouds [20].

Maximally Rotating Maximal Mass.− We construct
axisymmetric neutron star models using the rns code
[21, 22], which calculates relativistic rotating hydrostatic
equilibria following the method outlined in [23, 24]. The
collapse occurs when the stellar mass exceeds Mmax

at which the star becomes unstable according to the
turning-point criterion [25], and no hydrostatic solution
is found ([26] show that neutral instability is extremely
close to the turning-point, so the distinction between the
two is insignificant).
Mmax depends on the angular momentum J and the

EOS of dense nuclear matter. For a given EOS, we cal-
culate Mmax(J) and find a and je immediately prior to
collapse. Disk formation is clearly impossible for a non-
rotating star because matter will fall radially into the
newly-formed Schwarzschild black hole. As J and hence
je are increased, black hole spin a increases and hence
jisco decreases. Condition (1) could thus in principle be
satisfied at some point along the maximal mass sequence.
The maximal mass sequence Mmax(J) cannot be ex-

tended indefinitely as it eventually reaches the mass-
shedding limit, beyond which the co-rotating orbital fre-
quency at the SMNS equator exceeds the SMNS rota-
tion frequency. This point defines the maximally ro-
tating maximum mass (MRMM), Mmax(Jmax), which is
typically 10-30% higher than Mmax(0). The collapsing
MRMM has the best chance to form a debris disk but
this is not guaranteed. Although je of the MRMM is
just sufficient to orbit the hydrostatic star, the space-
time metric changes after the collapse and the same je
can fail to sustain Keplerian rotation around the nascent
black hole. If condition (1) is not met for the MRMM,
it will not be met for any slower rotating maximal mass
models and we may conclude that disk formation is im-
possible for this EOS.
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FIG. 1. Sequence of neutron star mass M and spin param-
eter a for three sample EOSs, illustrating our method for
assessing the possibility of disk formation following SMNS
collapse. The top portion of the figure shows the maximal
mass sequence (triangles/squares/circles) and mass shed lim-
its (small points) for each EOS. Masses are normalized to the
maximal value for a non-rotating star corresponding to each
EOS. The bottom portion shows the (dimensionless) specific
angular momentum of a test particle at the SMNS equator,
jec/GM , along the maximal sequence curves. A solid red line
denotes the minimal angular momentum required to orbit the
resulting Kerr black hole with spin parameter a, jisco(a). Ac-
cording to the criterion (1), disk formation is ruled out as
long as je lies below this red curve. These three EOS are also
marked in Figure 2.

The input parameters of the rns code are the central
energy density and the oblateness of the star. For a given
oblateness we find the maximal mass model by varying
the central energy density. Then we step along the max-
imum mass sequence toward MRMM by increasing the
oblateness parameter. At the end of the sequence we it-
erate the oblatness until the mass shed limit is found to
within a specified accuracy. At each step we check if the
disk formation criterion (1) is satisfied.

Figure 1 illustrates our procedure for three representa-
tive EOS, labeled eosA (schematically described as stiff
at high densities), eosB (stiff at low densities), and eosC
(soft at all densities). For eosA, je < jisco for any black
hole spin a, so disk formation is impossible according to
criterion (1). For eosC, je > jisco for a & 0.5, indicat-
ing that a disk could form; however, the maximum non-
rotating mass for this unrealistic EOS is only 0.48M⊙.
Disk formation is also possible for eosB, but only for a
very narrow range of J near the mass-shedding limit.

Survey of the EOS Space.− The possibility of disk for-
mation is controlled by the EOS of dense nuclear matter,
which is poorly known. Therefore, below we conduct a
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FIG. 2. Regions of allowed and forbidden disk formation in
the EOS parameter space, separated by the grey strip in which
formation is unresolved by our numerical procedure. Dashed
purple curves show contours of constant maximum mass for
non-rotating neutron stars, while dotted black lines indicate
constant radius values for a 1.4M⊙ non-rotating star. The
green region shows the 2σ allowed parameter space based on
observed neutron star masses [2] (bottom boundary) and con-
straints on neutron star radius [29] (left and right side bound-
aries).

survey over a broad range of EOS. Our goal is to check
whether it is possible to simultaneously satisfy the disk
formation criterion and current observational constraints
on neutron star radii and masses.
We parametrize the EOS at ρ > ρ0 = 1014.3 g cm−3

as a broken power law (ρ0 ≈ nuclear saturation density).
This choice is motivated by previous works [27] which
show that a piecewise polytrope can reliably reproduce
a variety of EOS models. The break is fixed at density
ρ1 = 1014.7 g cm−3. At densities below ρ0 we use the
SLy EOS [28] with the approximation of [27], and we fix
P (ρ0) to the SLy value.
With fixed ρ1 we are left with only two free param-

eters: P1 = P (ρ1) and the power-law index at ρ > ρ1,
Γ2 = d lnP/d ln ρ. Two degrees of freedom in the EOS
may be insufficient to predict observables to within ∼ 1%
accuracy (e.g., as in [27]). However, this form of EOS
is sufficiently flexible for our purposes, allowing indepen-
dent variation of the SMNS mass M and radius R. These
parameters determine the star’s compactness M/R, the
key factor for disk formation.
The results of our numerical survey of the parame-

ter space P1-Γ2 are shown in Figure 2. For “stiff” EOS
above the grey strip even the MRMM configuration fails
to meet the criterion (1), and thus disk formation is ruled
out. The criterion is met by the MRMM below the grey
strip (and possibly inside the strip where it is numerically
unresolved).

Small P1 or Γ2 values are however problematic as they
predict low Mmax while observations demonstrate the ex-
istence of neutron stars with M ≈ 2M⊙ [1, 2], even at
moderate rotation when centrifugal effects may be ne-
glected (the 39 ms spin period of J0348+043 is slow
enough that it can be treated as essentially non-rotating
for the purpose of constraining the maximal neutron star
mass).

An additional observationaly accessible parameter is
the radius of normal neutron stars with moderate rota-
tion and canonical mass M ≈ 1.4M⊙. For instance using
observations of transiently accreting and bursting neu-
tron stars [29] reported R1.4M⊙

= 10.42 − 12.89 km at
2σ. We note that current neutron star radius constraints
are subject to uncertainties in both astrophysics and nu-
clear physics modeling and the radius constraints are not
entirely settled yet (cf. e.g., [30–32]).

For any candidate EOS one should check its predic-
tion for Mmax(J ≈ 0) as well as R1.4M⊙

, which can be
tested against observations. Figure 2 shows the contours
of constant Mmax(J = 0) and R1.4M⊙

on the P1-Γ2 plane
together with the observational constraints. The con-
dition Mmax > 2M⊙ alone excludes almost the entire
region where disk formation is possible. A significant
gap appears between this region and the allowed region
if following [29] we also require R1.4M⊙

< 13 km.

By tweaking the shape of P (ρ) with additional pa-
rameters we have managed to construct EOSs for which
the R1.4M⊙

curves do not exclude the disk formation re-
gion. Nevertheless, even below the grey strip, formation
of a debris disk requires significant fine-tuning toward
the MRMM configuration. Disk formation quickly be-
comes impossible if M is reduced below MRMM (see Fig-
ure 1, in particular model eosB). Specifically, for the EOS
“smithed” to change the R1.4M⊙

curves, we find that a
fine-tuning in mass of 6× 10−4 is necessary.

Discussion and Astrophysical Implications.− Our
method employs a simple parametrization for the high
density EOS as a piecewise polytrope, and hence may
not replicate nuances of realistic EOSs (for instance, [27]
shows that it tends to overestimate the sound speed).
This parametrization is, however, sufficient to capture
the overall mass distribution of the star, which is most
important to our analysis.

In addition to our parameterization, we have applied
our method directly to the entire list of “realistic” EOSs
given in [27] (their Table III), and find that none of these
support disk formation. Interestingly, the robustness of
our main conclusion relies in part on the recent discovery
of a 2M⊙ neutron star [1, 2] and hence could not have
been made with as much confidence prior to 2010, when
the largest known mass was 1.74±0.04M⊙.

Although lower limits on the maximum neutron star
mass are well established by dynamical measurements,
observational constraints on the neutron star radius are
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subject to systematic uncertainties [e.g., 33]. Our con-
clusion that disk formation is unlikely depends most sen-
sitively on the established maximum mass constraints,
and less critically on the neutron star radius. The lat-
ter may be varied independently with additional EOS
parameters.
Our analysis assumed axisymmetric collapse. This

is reasonable since non-axisymmetric perturbations will
likely be damped out via gravitational waves. Further-
more, if the amount of surviving disk mass is determined
by deviations from axisymmetry then producing a disk
of an interesting mass & 10−3M⊙ translates into a radial
perturbation of & 2 km, an unlikely occurrence.
We have additionally assumed that magnetic or vis-

cous torques do not affect the SMNS matter during the
collapse. Numerical hydrodynamical simulations consis-
tently show that the SMNS matter collapses on a dynam-
ical timescale with approximate conservation of angu-
lar momentum and negligible dissipation effects on fluid
streamlines [18]. Magnetic fields could become dynam-
ically important only when they are extremely strong.
Such fields could also slightly affect the SMNS structure.
Its radius would be increased up to ∼ 16% in the most
extreme case of magnetic pressure equal to thermal pres-
sure (e.g., [34]).
Our results have implications for some GRB models.

Electromagnetic emission from SMNS formed in neutron
star binary mergers has been proposed by many authors
[e.g. 35–39] to explain long-lived X-ray flares (“extended
emission”) and plateaus observed following short dura-
tion GRBs [e.g. 40–42], which in some cases have been
observed to terminate abruptly in a way suggesting a
SMNS that has collapsed to a black hole [43]. These
magnetar models have been criticized because it is not
clear how to produce the relativistic jet responsible for
the initial GRB itself as the result of baryonic pollution
from the young neutron star remnant [e.g., 44]. This
has recently led to the suggestion of a “Time Reversal”
scenario [16, 17], whereby black hole formation and the
GRB is delayed for tens or hundreds of seconds follow-
ing the merger, but due to light time travel effects is
observed before X-rays from the SMNS remnant cease.
A similar physical situation, which posits the collapse of
a SMNS to a black hole following the accretion of mat-
ter from a binary companion (accretion-induced collapse;
e.g., [45, 46]) is also commonly invoked as an alternative
to neutron star merger models for short GRBs.
Both these alluring models (accretion-induced collapse

and Time Reversal) require a debris disk after the SMNS
collapse in order to power the short GRB. Our results
show that this assumption contradicts the stiff nuclear
EOS inferred from observations of neutron stars.
This does not necessarily mean that SMNS collapse

will have no observational electromagnetic signature. For
instance [47, 48] suggest that if the SMNS is initially
magnetized, a significant electromagnetic transient could

arise regardless of any surrounding accretion disk. How-
ever, such a transient is unlikely to last many dynamical
times across the black hole horizon and hence may fail to
explain the 0.1− 1 s duration of observed short GRBs.
Our model assumes solid body rotation and a cold EOS

and hence does not rule out a disk if the black hole forms
shortly following a binary neutron star merger. Disk for-
mation in fact appears to be a robust outcome of gen-
eral relativistic simulations of the merger process [e.g.,
9]. Thermal pressure is only sustained for a few seconds
after the merger, until neutrino cooling sets in. More
importantly, the merger remnant is primarily supported
by differential rotation, such that the collapse is usually
initiated by the outwards redistribution of angular mo-
mentum, as is expected to occur on a timescale of tens
or hundreds of milliseconds due to magnetic or viscous
stresses. Since in this case collapse occurs prior to the
establishment of solid body rotation throughout the rem-
nant, disk formation is much more likely than in the case
of a delayed collapse.
Finally, our results also render untenable proposed sce-

narios for long duration GRBs which postulate a long de-
lay (exceeding hours or days) between the core collapse
of a massive star and the formation of a black hole with
a debris accretion disk [49].
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