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A scheme to utilize atom-like emitters coupled to nanophotonic waveguides is proposed for the generation
of many-body entangled states and for the reversible mapping of these states of matter to photonic states of an
optical pulse in the waveguide. Our protocol makes use of decoherence-free subspaces (DFS) for the atomic
emitters with coherent evolution within the DFS enforced by strong dissipative coupling to the waveguide. By
switching from subradiant to superradiant states, entangled atomic states are mapped to photonic states with
high fidelity. An implementation using ultracold atoms coupled to a photonic crystal waveguide is discussed.

PACS numbers: 42.50.-p,03.67.Bg,42.50.Ex

Recent works on optical emitters coupled to one-
dimensional (1D) waveguides has opened new avenues to
investigate light-matter interactions [1–20]. Particularly
promising are the setups where atoms are strongly coupled
to structured dielectrics [6–10], where large Purcell factors
have been predicted [21, 22]. Furthermore, collective ef-
fects can be enhanced by placing the atoms at particular po-
sitions [15, 16, 23–29]. The combination of atom-like emit-
ters and nanophotonic waveguides may enable new regimes
for the interaction of light and matter, leading to technolo-
gies that outperform current ones and qualitatively different
physics. In this work we investigate the possibility of us-
ing atom nanophotonics interfaces to tailor arbitrary states for
propagating photons on demand, which lies at the heart of
many quantum information [30], metrology [31] and lithog-
raphy [32] methods (see Ref. [33] for a review). We predict
large fidelities even for relatively large numbers of photons,
something which has been impossible to achieve with other
platforms in the optical domain.

Our proposal uses N + 1 three-level systems (with levels
{|g〉, |s〉, |e〉}), where one of the optical transitions (|g〉 ↔ |e〉)
is strongly coupled to a 1D waveguide (see Fig.1(a-b)). We
denote by P1D the Purcell factor corresponding to that tran-
sition; i.e., the ratio of the emission rate into the waveg-
uide mode, Γ1D, and the one for all other modes, Γ∗. The
atoms must be separated by distances proportional to λa =
2π/q(ωa), where q(ω) is the wavenumber determined by the
waveguide dispersion relation. Depending on their internal
state, atoms may experience a collective decay into the waveg-
uide, or become completely decoupled from it. The latter oc-
curs if they are in a decoherence free subspace (DFS)[34–36].
Our protocol consists of two steps: in the first one, we gener-
ate certain states within the DFS, |ΨD〉, by driving the atoms
with lasers and using the collective quantum Zeno effect [37–
39] within the DFS with a (in)fidelity 1−F1 ∝ m/

√
P1D, where

m is the maximum number of photons we want to generate; in
the second one, a laser pulse takes the atomic state out of the
DFS so that atoms collectively emit into the waveguide, creat-
ing the desired state of a single propagating mode, |ΨB〉, with
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Figure 1. (a) Setup: N atoms plus 1 ancilla atom coupled to a 1D pho-
tonic bath. The ancilla must be individually addressed. (b) Atomic
Λ-scheme: the transition |g〉 ↔ |e〉 is coupled to the aq-modes. A
laser controls the transition |s〉 ↔ |e〉 with intensity, Ωn and detun-
ing ∆n. Another field controls |s〉 ↔ |g〉, with frequency ωs. (c)
Relevant states and steps for our protocol: (I) generation of super-
positions of symmetric Dicke states, |Dm〉, by using the excited dark
states |Ψ(m)

e 〉. (II) Flipping |s〉 → |e〉 to generate the superradiant
state |Sm〉, which decays rapidly (III) to the desired photonic state.

an (in)fidelity 1−F2 ∝ m2/(NP1D).
The atom-photon hamiltonian of these systems is given by

H = Hqb +Hfield +HI, with Hqb = ∑
N+1
n=1 (ωaσn

ee +ωsσ
n
ss) and

Hfield = ∑q ωqa†
qaq, (using h̄ = 1), where ωa is the two-level

system energy, ωq is the field dispersion relation of the 1D
photonic modes, and σn

i j = |i〉n〈 j|. We consider only the cou-
pling to a single polarization as justified for suitable dielectric
waveguide modes [21], that is,

HI = ∑
n,q

(
gqσ

n
gea†

qe−iqzn +H.c.
)
, (1)

with gq the single-photon coupling constant to the mode of
interest and where we have used the rotating wave approx-
imation. When the 1D-bath have a much faster relaxation
timescale than the atomic system, the atoms are described by
a density matrix, ρ , which in the Born-Markov limit, is gov-
erned by a master equation [23, 24, 40] of the form: dρ/dt =
∑n,m[(Γ1D/2)eiq(ωa)|zn−zm|

(
σn

geρσm
eg−ρσm

egσn
ge
)
+H.c.] in the
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interaction picture rotating with Hqb. By appropriately choos-
ing the atomic positions, e.g., zn = nλa = n2π/q(ωa), with
n∈N, the coherent atom-atom interactions are eliminated [41]
and the effective interaction yields a pure Dicke model [42]
described by

LD(ρ) =
Γ1D

2
(SgeρSeg−SegSgeρ)+H.c., (2)

where we defined Si j = ∑
N+1
n=1 σn

i j. One of the assets of the
Dicke model is the emergence of sub and superradiant states.
The excited states with m atoms in |e〉 that are symmetric un-
der permutations, denoted by |Sm〉, are superradiant with a de-
cay rate proportional (at least) to the atom number N, and are
unique for each m. On the other hand, the states satisfying
Sge|Ψ〉 = 0 are dark states of the Liouvillian of Eq. 2, and
therefore decoupled from collective dissipation. These dark
states span the DFS that is highly degenerate for m > 1.

The atomic entangled states that must created in the first
step of our protocol are very peculiar, as: i) they must be pre-
pared within the DFS to avoid dissipation; ii) they must be
easily mapped to the appropriate superradiant states, to gener-
ate arbitrary superpositions of the photonic waveguide states.
Our strategy consists of first, identifying states, denoted by
|Dm〉, in the subspace spanned by the ground levels g, and s,
which can be mapped one-to-one to a basis |Sm〉 of superra-
diant states using a simple laser pulse, and which in turn give
rise to m photons in the waveguide via superradiance. Then,
we use a more sophisticated scheme within the DFS to gener-
ate superpositions of |Dm〉, which requires only m steps.

By introducing another metastable state, |s〉, as depicted
in Fig.1(b), the candidates to map to superradiant ones are
the symmetric Dicke states |Dm〉 ∝ sym{|s〉⊗m ⊗ |g〉⊗N−m},
as they can be turned superradiant by switching |s〉 → |e〉.
Having identified the target, |Dm〉, we need to find ways to
build efficiently arbitrary superpositions. Previous studies
have proposed implementing one/two-qubit universal gates
within DFS [34–38], but the number of steps increases rapidly
with N, or using adiabatic passage methods [43–46], limited
to small excitations number m. Here, we use the collective
character of the interaction to deterministically generate arbi-
trary N-qubit states for which the number of steps is indepen-
dent of the number of atoms.

The scheme that we use is depicted in Fig. 1(a): we consider
a system of N +1 emitters, in which we aim to generate |Dm〉
in the first N emitters using the ancilla as an auxiliary state.
As the |Dm〉’s are invariant under the permutation of the first
N atoms, we choose the control fields with the same symmetry
and the same detuning ∆n = ∆e for all emitters:

Hc =
Ωc

2
σ

N+1
sg +H.c. , (3)

Hlas =

(
Ωr

2

N

∑
n=1

σ
n
se +

Ωanc

2
σ

N+1
se +H.c.

)
+∆e

N+1

∑
n=1

σ
n
ee ,

written in the interaction picture with respect to Hqb. The Hlas
allows to control both the emitter state and the coupling to the

1D-reservoir, while Hc allows to control the atomic states of
the ancilla independently of the coupling to the 1D-reservoir.
We are interested in working in the regime of strong collective
dissipation, where NΓ1D�Ωr,Ωanc,Ωc,∆e. In this situation,
the 1D-bath is continuously monitoring the collective atomic
state, as in the Quantum Zeno regime [34–38], and projecting
its state into the DFS of LD. Formally, we obtain the effec-
tive dynamics within the DFS by treating the control fields
and dissipation into other decay channels as a perturbation to
the collective dissipation LD [47]. To explain the protocol,
we first consider the action of the control fields projected into
the DFS to first order, leaving the discussion of errors due to
higher orders later.

Due to the symmetry of the problem, it is convenient to
introduce the following notation to describe any symmetric
state over N atoms:

|Fm,k〉 ∝ sym{|s〉⊗m⊗|e〉⊗k⊗|g〉⊗N−m−k} , (4)

that embeds both |Dm〉 ≡ |Fm,0〉 and |Sm〉 ≡ |F0,m〉. In general,
the DFS of the Liouvillian LD grows exponentially with the
number of atoms, but for each m, only three of these states
fulfill the permutation symmetry of our system [47]. These
states are:

|Ψ(m)
s 〉=|Fm−1,0〉⊗ |s〉A , |Ψ(m)

g 〉= |Fm,0〉⊗ |g〉A , (5)

|Ψ(m)
e 〉=

√
Nm

Nm +1
|Fm−1,0〉⊗ |e〉A−

1√
Nm +1

|Fm−1,1〉⊗ |g〉A,

where |ψ〉A denotes the state of the ancilla and Nm = N−m+
1. In Fig. 2(a) we sketch the protocol steps by a diagram of the
projected hamiltonian into the DFS. It consists of two parts,
which are applied mmax times to reach any superposition of
states over the first N atoms |ΨD〉⊗ |g〉A = (∑

mmax
m=0 dm|Dm〉)⊗

|g〉A with maximum mmax excitations from the initial state
|Ψ(0)

g 〉: i) Use Hc to flip the ancilla state |g〉A → |s〉A. This
transition makes: |Ψ(m−1)

g 〉 → |Ψ(m)
s 〉. ii) Two-photon tran-

sition |Ψ(m)
s 〉 → |Ψ(m)

g 〉. It can be shown that the dark states
corresponding to a given excitation m form an effective Λ-
scheme within the DFS via the far detuned state |Ψ(m)

e 〉 [47].
The two-photon transition can be made on-resonance if the
intensities are chosen such that |Ωanc| = |Ωr|

√
m

Nm
, which is

possible because we demanded individual addressing of the
ancilla. If this condition is not imposed, the |Ψ(m)

s,g 〉 experi-
ence different Stark-shifts that spoil the two-photon process.
The effective Hamiltonian for the m-th excitation is

HD = Ω
(m)/2|Ψ(m)

s 〉〈Ψ(m)
g |+H.c., (6)

where |Ω(m)| = |Ωr|2
2|∆e|

m
Nm+1 . The combination of both steps

gives rise to a ladder-like structure (see Fig. 2(a)) , which
can be used to build any arbitrary superpositions state of |Dm〉
from the ground state |Ψ(0)

g 〉 with mmax steps each. The neces-
sary pulse sequence can be obtained by calculating the inverse
evolution from the target to the initial state and successively
removing excitations in the ladder-like structure [39].
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Figure 2. (a) Preparation of arbitrary superpositions of |Dm〉. Al-
ternating between σx gates on the ancilla and two-photon transitions
via |Ψ(m)

e 〉 builds up excitations step by step. (b) [(c)] Error,1−F ,
as a function of P1D for generating |Dm〉 [|Φm〉= 1√

2

(
|D0〉+ |Dm〉

)
]

up to mmax = 5 excitations. The dots correspond to the numerical
fidelities, whereas the solid lines depict the 1/

√
P1D scaling.

Another advantage of our protocol is that it can be used
to generate a superposition of photonic states in the 1D-bath
by dissipative means once we have |ΨD〉. To make sure
the ancilla atom can be neglected, we flip the ancilla state
|g〉A → |s〉A and apply no fields to it. In order to map to
the superradiant state of N atoms, we apply a fast resonant
π-pulse (∆e = 0 and Ωr� NΓ1D) on the N emitters to switch
all |s〉n → |e〉n, thus generating the superposition of |Sm〉 ∝

sym{|e〉⊗m⊗ |g〉⊗N−m}. Due to their superradiant character,
the |Sm〉 decay completely to 1D-reservoir modes. Because HI
conserves the number of excitations, the superradiant state of
m-excitations, decays to Fock-state of m-photons [47]:

|Sm〉 → |m{q}〉 ≡∑
{q}

A{q}(t)
m!

a†
q1
. . .a†

qm |vac〉 , (7)

where {q} = {q1, . . . ,qm} is the set of relevant momenta
which run over the whole Brillouin Zone qi ∈ B.Z. The scat-
tering amplitude A{q}(t) is calculated using a generalized
input-output formalism [47, 52–54] and quantum regression

theorem [55]:

A{q}(t) =
m

∏
r=1

ig
√

rNr e−iωqr t

i(∑r
l=1 ωql − rωa)+ rΓ1DNr/2

+P[{q}] (8)

for sufficiently large times t � 1/NmΓ1D when the atomic
state has decayed completely and defining P[{q}] as all the
permutations of {q}. The only dependence on t enters
through: e−i∑

m
r=1 ωqr t , which describes the center of mass mo-

tion of the wavepacket when going to the real space. In the low
excitation regime, one can either use the Holstein-Primakoff
approximation [56] or directly substitute Nm → N in the ex-
pression above, arriving to:

AHP
{q}(t) =

m

∏
r=1

e−iωqr t ig
√

rN
i(ωqr −ωa)+Γ1DN/2

, (9)

that has a Lorentzian shape centered at ωa with bandwidth
Γ1DN/2. Substituting A{q}(t)→ AHP

{q}(t) into the definition of
|m{q}〉, yields a linear Fock state denoted by |mHP

{q}〉. In princi-
ple, the emission into the waveguide is bidirectional (±q), but
combining both fields in phase, e.g., by a placing a mirror at
an appropriate distance, or by engineering the atom-photon
coupling appropriately [3, 4, 14], it is possible to achieve
emission in one-direction only. Furthermore, by shaping the
pulse, Ωr(t) (within a bandwidth . NΓ1D) we generate any
desired shape of the output photonic state, e.g., to create a
time-symmetric photonic state [57] that ensures the reversibil-
ity of the process when mapping the photonic state to another
sample. Moreover, because of the linearity of the calculation
of A{q} with respect to the input state [47], superpositions of
atomic states decay to superpositions:

|ΨD〉 →
mmax

∑
m=0

dm|Sm〉 → |ΨB〉=
mmax

∑
m=0

dm|m{q}〉 , (10)

that will be generated in a single-mode wavepacket, as re-
quired for most applications [33], as long as N� m because:
〈m{q}|mHP

{q}〉 ≈ 1−m3/(20N2) [47].
So far, we have only discussed the ideal protocol without

considering, e.g., spontaneous emission into all other modes
with rate Γ∗. For the error in the preparation of the many-body
entangled state, we derive an error rate ε from perturbation
theory, which, together with the time of the operation τ , gives
an approximation of the fidelity, F1 =

√
〈ΨD|ρ(τ)|ΨD〉 ≈

1−τε , with respect to the target state |ΨD〉. The dominant er-
rors assuming N�m and Γ1D� ∆e� Γ∗ come from [47]: i)
the spontaneously emitted photons from |Ψ(m)

e 〉 to decay chan-

nels other than the waveguide, which scales as ε1 ≈ Γ∗ m|Ωr |2
4N∆2

e
.

ii) From the photons emitted from the small populations of su-
perradiant states. We estimate the rate of these errors by tak-
ing into account the second order corrections of the projected
hamiltonian which are finally given by ε2≈NΓ1D

m|Ωr |2
4∆2

e+(NΓ1D)2 .
Summing up, the error for the m-th step of the process, which
takes τ = π

|Ω(m)| ≈
2πN∆e
m|Ωr |2

for full population transfer, is

1−F(m)
1 ≈ π

2

(
Γ∗

∆e
+

∆e

Γ1D

)
, (11)



4

that is optimised for ∆e,opt =
√

Γ∗Γ1D, which yields a scal-
ing: 1− F(m)

1,opt ∝ 1/
√

P1D. To create a superposition |ΨD〉,
we require mmax steps. Thus, the total error of the first part
of the protocol is 1−F1 ∝ mmax/

√
P1D, that can be improved

via post-selection conditioned on detecting no photons in the
waveguide [47].

To validate the scaling analysis, we study numerically the
preparation of two relevant sets of states: i) the |Dm〉; ii) the
superpositions |Φm〉= 1√

2

(
|D0〉+ |Dm〉

)
. Due to the imposed

symmetry conditions the relevant Hilbert space depends only
on the maximum number of excitations, mmax, while the N
only enters on the two-photon resonance condition, that fixes
Ω(m) [47]. With this restriction, we use a non-hermitian evolu-
tion governed by Heff = Hlas +Hc− iΓ1DSegSge/2− iΓ∗See/2.
To generate the |Dm〉, the pulse sequence consists of a com-
plete transfer of populations in each step of Fig. 2(a), which is
ensured by fixing the time of interaction, t, to tΩc(Ω

(m)) = π

for the microwave (Raman) transitions, whereas for the |Φm〉
the pulse sequence is calculated numerically. In Fig. 2(b-c),
we show the numerical fidelities obtained when fixing the off-
resonant transition to the optimal ∆e,opt, confirming that our
arguments give the correct scaling ∝ 1/

√
P1D.

Finally, we estimate the fidelity of the photonic state con-
sidering the effect of Γ∗. For a superradiant state with m-
excitations the error rate is mΓ∗, while the average time to
decay is 1/(NΓ1D), which yields an error of 1−F(m)

2 = 2mΓ∗
NΓ1D

.
When there are mmax excitations in the system, the total fi-
delity of the process is

F2 ≈ 1− m2
maxΓ∗

NΓ1D
. (12)

The dissipative character of this mapping allows for the ef-
ficient generation of (arbitrary superpositions of) photonic
states, e.g., Fock states, that typically are generated proba-
bilistically [58–60] or via non-linear interactions [39].

An appealing platform to implement these ideas is cold
atoms trapped near photonic crystal waveguides [6–10],
where Γ1D/Γa = ξ ngσ/(2Am), where ng = c/vg is the group
index, σ = 3λ 2

0 /(2π) the radiative cross-section, Am the ef-
fective mode area, Γa the vacuum emission rate and ξ a cav-
ity enhancement factor. Current values for Cs atoms (λ0 =
894 nm, Γa/2π = 5.02 MHz) and SiN alligator waveguides
[6, 10] have Am ≈ 0.2 µm2, ng ≈ 10, ξ ∼ 5 and Q-factors
of 106. Depending on the reduction of spontaneous emis-
sion, Γ∗ = αΓa, these numbers lead to P1D ≈ 50/α . Intrin-
sic losses in the dielectric and reduced vg set finite propa-
gation lengths of waveguide modes, Lprop/λa ≈ Q/(2πng),
which is > 104 for state-of-art SiN values [6, 10]. Retardation
effects also set a maximum number of atoms for superradi-
ant atom-photon mapping, e.g., assuming a separation λa/2,
then NΓ1D < 2vg/(Nλa), which for current structures leads
to N . 500 atoms. Possible ways of avoiding retardation
are to increase Γ1D by increasing ξ (not ng) [10]; or by do-
ing the atom-photon mapping off-resonantly, which decreases
Γ1D while keeping P1D constant. Other potential problems

that we neglected are i) imperfect atomic separations limited
ultimately by center of mass wavepackets and atomic motion
and ii) group velocity dispersion that distorts the propagating
wavepacket. In Ref. [47], we estimate under which condi-
tions they can be neglected, however, a thorough study should
be done for each implementation to minimize the impact on
the protocols described.

In conclusion, we have presented a protocol to generate
deterministic superpositions of many-body entangled atomic
states in the presence of strong dissipation. Remarkably, the
errors in the preparation of complex superposition states in-
crease only linearly with the number of excitations of the sys-
tem and inversely with the square root of the Purcell Factor.
Furthermore, we have shown how to map these atomic states
to photonic states with a very efficient scaling that depends
linearly on the inverse collective Purcell Factor and how to
engineer a time-symmetric wavepacket that guarantees the re-
versibility of the mapping.
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