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In ponderomotive spectroscopy an amplitude-modulated optical standing wave is employed to
probe Rydberg-atom transitions, utilizing a ponderomotive rather than a dipole-field interaction.
Here, we engage nonlinearities in the modulation to drive dipole-forbidden transitions up to the
fifth order. We reach transition frequencies approaching the sub-THz regime. We also demonstrate
magic-wavelength conditions, which result in symmetric spectral lines with a Fourier-limited peak
at the line center. Applicability to precision measurement is discussed.

Measurements of atomic transition frequencies are the
cornerstone of precision metrology, used in applications
ranging from atomic clocks [1] to measuring gravitational
redshifts [2] and the radius of the proton [3]. An impor-
tant metric of precision in these applications is the frac-
tional frequency resolution, ∆ν/ν, in which ν is the mea-
sured frequency and ∆ν is its uncertainty. In order to ob-
tain the best ∆ν/ν, it is desirable to increase ν while de-
creasing ∆ν. In recently-developed ponderomotive spec-
troscopy [4], Rydberg atoms are trapped in a standing-
wave laser field (optical lattice). Electronic transitions
are driven by modulating the lattice-light intensity at
the transition frequencies of interest. In this Letter, we
employ nonlinearities intrinsic to this excitation process
to increase ν by driving atomic transitions at higher har-
monics of the modulation frequency. We also identify
magic transitions that minimize trap-induced line shifts
and reduce the uncertainty ∆ν by about one order of
magnitude.

The ponderomotive interaction of a Rydberg electron
with an optical field allows one to drive transitions when
there is substantial spatial variation of the field inten-
sity within the volume of the atom and when the lattice
potential is modulated in time at a resonant transition
frequency between states. The interaction Hamiltonian
(in a.u.) is [5]

Ĥ = A(r̂) · p̂ + A(r̂) ·A(r̂)/2, (1)

where p̂ is the electron’s momentum operator and A
the vector potential of the laser field. In this work, the
A · A (ponderomotive) interaction drives atomic transi-
tions, leading to flexible selection rules [6] and expanding
the range of accessible transitions.

In Fig. 1 we show the experimental set-up. See [4] for
details. A continuous-wave (c.w.) 1064-nm laser beam
is split by a Mach-Zehnder interferometer into a low-
power and higher-power beam. The low-power beam is
amplitude-modulated via an EOM driven by a microwave
signal with voltage amplitude Vµ and frequency Ω1. This
beam is coherently re-combined with the unmodulated
(higher-power) beam to parametrically amplify the mod-
ulation sidebands [the radical term in Eq. (2)]. We form a
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FIG. 1. Experimental set-up. A Mach-Zehnder interferome-
ter splits and re-combines a 1064-nm c.w. beam. One portion
is amplitude-modulated by a fiber-based electro-optic mod-
ulator (EOM), driven at frequency Ω1 (inset). Locking is
achieved via photodetectors (PD) and a piezo-electric trans-
ducer (PZ), described in [4]. Optional lattice inversion is
achieved via a phase shifter (PS) and λ/4 plate, described
in [7]. The optical lattice is formed by retro-reflecting and
focusing the beam into a 85Rb magneto-optical trap (MOT).
The lattice modulation period in qth order is T = 2π/(qΩ1).

standing-wave optical lattice in the atom-field interaction
region by retro-reflecting the lattice beam. The ground-
state atoms are collected and cooled at lattice intensity
maxima. We laser-excite Rydberg atoms such that their
center-of-mass locations are either at lattice intensity
minima or maxima. This is accomplished by optional in-
version of the optical lattice potential, effected by a phase
shifter and a λ/4 plate (see Fig. 1 and [7]). Intensity mod-
ulation of the lattice then results in a time-periodic atom-
field ponderomotive interaction with a leading quadratic
dependence on position.

Temporal harmonics in the lattice modulation drive
transitions at frequencies Ωq = qΩ1, where q is an in-
teger. The EOM offset voltage is set to Vπ/2 (see inset
in Fig. 1). To modulate at the fundamental frequency
Ω1, one has Vµ . Vπ/2 (dashed blue line). To access
higher harmonics, Vµ is increased (solid blue line). The
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the incident intensity Iinc at the location of the atoms,
scaled by Idc (the intensity of the unmodulated high-
power beam). Here, η is the power ratio between the
modulated and unmodulated beams in the interferome-
ter. A Fourier analysis of Eq. (2) with η = 0.0077 (typical
experimental value) leads to the Rabi frequency for the
qth harmonic as a function of modulation strength Vµ/Vπ
(Fig. 2). The Rabi frequency is scaled by Idc (in units of
W/m2);

√
ε, where ε is the ratio of the return and inci-

dent lattice-beam intensities (ε = 0.09 experimentally);

and Dn′,l′,m
n,l,m . The unitless matrix elements for the spa-

tial coupling, Dn′,l′,m
n,l,m , have been obtained in [6]. Here,

the Rabi frequencies are near 100 kHz.
The Rabi frequencies exhibit a sinusoidal dependence

on position in the optical lattice [4] and, for even-parity
transitions (our case), are maximal for atoms at lattice
intensity maxima and minima. Since the peak Rabi fre-
quencies in Fig. 2 drop slowly as a function of q, un-
like in typical nonlinear spectroscopy, we do not need to
increase Idc to realize higher-order transitions, thereby
avoiding increased light shifts. We utilize Fig. 2 to de-
termine the Vµ needed to achieve a high Rabi frequency
at the harmonic order of interest. Atom-field interaction
times are ≈ 10 µs. We target S → S transitions because
they are insensitive to the MOT magnetic field (which
is always on). Under traditional electric-dipole selection
rules, these transitions would not be allowed in first-order
perturbation theory. However, because we employ pon-
deromotive spectroscopy, typical selection rules do not
apply [6].

In Fig. 3 we demonstrate driving the ponderomotive
transition 52S1/2 → 53S1/2 via the third harmonic (q =
3) of the lattice modulation. For this transition, D53S
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FIG. 2. Scaled Rabi frequencies of the qth harmonics of the
lattice modulation at lattice intensity minima, as a function
of Vµ (units of Vπ) [8].

0.19, which is near the maximal value for nS → (n +
1)S transitions, D59S

58S = 0.215. The inset in Fig. 3(a)
shows that most spectral features can be reproduced by
a semi-classical simulation. Details of the simulation can
be found in [4] and [9]. The two outermost peaks are
attributed to atoms that are anti-trapped (red-detuned
peak) or trapped (blue-detuned peak) in the lattice [9].
The simulation does not reproduce the sharp central peak
in the experimental spectrum.

To determine the line center, we fit the smoothed, av-
eraged spectral line in Fig. 3(a) to a triple-Gaussian. To
eliminate most of the trap-induced systematic shifts, we
take the mean of the center locations of the outermost
peaks. Assuming a perfect optical lattice, the outer-
most peaks correspond to equal but opposite extremum
light shifts from the unperturbed Rydberg-Rydberg tran-
sition. Therefore, the mean provides a measurement of
the transition line center with much-reduced light shift.
See [9] for details. Results are summarized in Table I.

In Fig. 3(b) we show the dependence of the 53S1/2

excited-state population on modulation strength Vµ/Vπ.
The behavior qualitatively agrees with the square of the
Rabi frequency for the q = 3 curve in Fig. 2, plot-
ted for comparison. In particular, significant excited-
state populations only occur beyond a threshold value of
Vµ/Vπ ≈ 0.6. Fig. 3(b) reinforces that the spectrum in
Fig. 3(a) is due to the nonlinear q = 3 component of the
lattice modulation.

To reach higher-frequency transitions, we drive tran-
sitions at higher q. In Fig. 4 we demonstrate the

- 1 0 0 0 - 5 0 0 0 5 0 0 1 0 0 0
0 . 0

0 . 1

0 . 2

( b )

Fra
cti

on
al 

po
pu

lat
ion

 in
 53

S 1/2

Ω 1 [ k H z ]  -  1 8 . 2 3 1 1 4 1  [ G H z ]

( a )q  =  3
- 5 0 0 0 5 0 0

 

 

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
0 . 0

0 . 1

 

Ma
xim

um
 po

pu
lat

ion
in 

53
S 1/2

M o d u l a t i o n  s t r e n g t h  ( V µ / V π)
FIG. 3. Third harmonic drive. (a) Population in 53S1/2 as
a function of lattice modulation frequency Ω1. Data are a
smoothed average of 10 scans with 200 measurements per fre-
quency step. Error bars, s.e.m. Red curve, triple-Gaussian fit.
Vertical black line, line center. Black dashed line, center lo-
cation of a two-photon microwave spectroscopy measurement
(black curve). Inset, simulation results. (b) Peak 53S1/2 pop-
ulation as a function of modulation strength Vµ. For each
data point, 6-10 scans taken. Vertical (horizontal) error bars,
peak height (Vπ) uncertainty. Red curve, proportional to the
square of the q = 3 curve in Fig. 2.
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FIG. 4. Fifth harmonic drive. (a), (b) Population in 56S1/2

as a function of lattice modulation frequency Ω1 for Ryd-
berg atoms prepared at lattice potential (a) minima (b) max-
ima. Data are a smoothed average of (a) 18 (b) 10 scans, 200
measurements each. Error bars, s.e.m. Red curve, double-
Gaussian fit. Vertical black line, line center. Insets, simula-
tion results.

ponderomotive transition 54S1/2 → 56S1/2, which has
D56S

54S = 0.08, via the fifth harmonic (q = 5). The spec-
tra in Figs. 4(a), (b) are reproduced accurately by the
simulations (insets). As before, the red-detuned (blue-
detuned) peak is mostly due to atoms that are anti-
trapped (trapped) in the lattice. We demonstrate the
relation between Rydberg-atom position and light-shift
polarity by preparing the Rydberg atoms either near a
potential minimum [Fig. 4(a)], which results in mostly
trapped atoms with positive light shifts; or maximum
[Fig. 4(b)], which results in mostly anti-trapped atoms
with negative light shifts [7].

To determine the line center, we fit the spectra in
Figs. 4(a),(b) to a double-Gaussian. The mean of the
center locations of the peaks yields a measurement in
which the systematic light shifts mostly cancel. See Ta-
ble I for results. The q = 5 transition in Fig. 4 has a
transition frequency of about 94.4 GHz. Hence, we are
approaching the sub-THz regime, which is important for
improving ∆ν/ν in precision frequency measurements.

Magic-wavelength lattices play an important role be-
cause they allow for probing atoms in a light trap while
avoiding systematic line-shifts due to the trap [10]. In
a ponderomotive lattice, a magic condition occurs when
a Rydberg atom becomes comparable in size to the lat-
tice period. Then, the lattice-induced shifts of certain
upper and lower Rydberg levels are nearly the same [11]
and cancel. For Rb nS1/2 atoms in a 1064-nm lattice,
this occurs for lower- and upper-level principal quantum
numbers symmetric about 69.5. Furthermore, for princi-
pal quantum numbers between n = 66 − 73 the sign of
the effective polarizability of the atoms is reversed, indi-
cating that Rydberg atoms are attracted to lattice-field
maxima. This case differs from the more typical case
where Rydberg atoms are attracted to field minima.

In Fig. 5 we drive the magic transition 69S1/2 →
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FIG. 5. Magic condition, fundamental. Population in 70S1/2

as a function of lattice modulation frequency Ω1. Data are a
smoothed average of 18 scans, 200 measurements each. Error
bars, s.e.m. Red curve, single-Gaussian fit. Vertical black
line, line center. Black dashed line, center location of a two-
photon microwave spectroscopy measurement (black curve).

70S1/2, for which D70S
69S = 0.13, at the fundamental fre-

quency (q = 1). The trap depths (light shifts) for both
states are about the same (2.2% of the free-electron pon-
deromotive trap depth). The magic condition results in
a lineshape that is symmetric and has a narrow central
feature. These characteristics are well-reproduced by the
simulation (inset). To determine the line center, we fit
the central feature, expected to have nearly-zero system-
atic light shift, to a single Gaussian. This measurement
has 2 kHz statistical uncertainty (see Table I).

In Fig. 6 we show a combination of both magic and
nonlinear ponderomotive spectroscopy, which has the
greatest potential to improve ∆ν/ν. Here, we drive the
magic transition 68S1/2 → 71S1/2, which has D71S

68S =
0.08, via the third harmonic (q = 3). The trap depths
for these states are both approximately 2.0% of the free-
electron ponderomotive trap depth. The lineshapes are
reproduced well by simulations (insets). In Fig. 6(a), we
prepare the Rydberg atoms at trapping potential min-
ima and observe a narrow central peak, the location of
which agrees very well with the result of a two-photon
microwave spectroscopy measurement (also shown). This
peak is largely due to trapped atoms, which experience a
Rabi frequency that is approximately fixed in amplitude
and phase throughout the atom-field interaction time.
This leads to a large pulse area and a central peak at
zero detuning.

We attribute other features observed in Fig. 6 to the
effect of atoms passing over the shallow lattice wells. The
Rabi frequency then varies in time and flips sign at the
lattice inflection points. In Fig. 6(b), we prepare the
atoms at lattice potential maxima. From here, the atoms
are likely to traverse several wells during the interaction
time, resulting in several flips of the Rabi-frequency sign.
This leads to a rotary-echo-like effect [12], i.e. small net
pulse area and transition probability. A small non-zero
detuning (partially) negates the echo effect. Hence, in
Fig. 6(b) a central dip is observed.

The small oscillations near the central peak in Fig. 5
(and to a lesser extent in Fig. 6) are also due to un-
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FIG. 6. Magic condition, third harmonic. Population in
71S1/2 as a function of lattice modulation frequency Ω1. Data
are a smoothed average of (a) 12 (b) 5 scans, 200 measure-
ments each. Error bars, s.e.m. Red curve, single-Gaussian fit.
Vertical black line, line center. (a) Lattice not inverted. Black
dashed line, center location of a two-photon microwave spec-
troscopy measurement (black curve). (b) Lattice inverted.

trapped atoms traversing multiple wells. The interplay
between consecutive Rabi-frequency sign-flips at the lat-
tice inflection points and the detuning-induced phase
∆Ω1t causes the detuning-dependent oscillations.

Because both Figs. 5-6 correspond to a magic condi-
tion, we expect the respective frequency measurements,
based on the central peaks, to have nearly-zero light shift.
In both cases, the symmetry of the lineshapes agrees with
our expectation. We attribute the≈ 200 kHz discrepancy
observed between Fig. 6(a) and (b) to differing residual
electric fields, causing different systematic DC shifts be-
tween the data sets (which were taken on different days).

In both Figs. 5-6 the central peaks in the lattice-
modulation spectra and the peaks in the two-photon ref-
erence spectra are at Fourier-limited resolution. There-
fore, precision measurements made via magic-condition
ponderomotive spectroscopy and traditional microwave
spectroscopy can have similar spectral resolution. How-
ever, nonlinear ponderomotive spectroscopy allows us to
access a wider variety of typically-forbidden transitions
at high frequencies.

In Table I we summarize transition frequencies (qΩ1)
measured in the modulated lattice, expected transition
frequencies (νth) calculated using quantum defects from
[13], and reference measurements (2ν2p) obtained via
two-photon microwave spectroscopy in the absence of a
lattice. The terms in brackets represent ∆ν/ν for each
frequency value. Overall, agreement is quite satisfac-
tory. Statistically significant shifts in the measured re-
sults from the calculated values are negative, indicating
possible Stark shifts due to residual DC electric fields. In
the magic-condition cases, the statistical uncertainty in

qΩ1(GHz) νth(GHz) 2ν2p(GHz)

52S 1
2
→53S 1

2
54.693423(15) 54.693577(5) 54.693556(6)

q=3 [2.7×10−7] [9×10−8] [1×10−7]

54S 1
2
→56S 1

2
a. 94.370915(15) 94.371060(8)

q=5 [1.6×10−7] [8×10−8]

b. 94.370955(15) 94.371060(8)
[1.6×10−7] [8×10−8]

69S 1
2
→70S 1

2
22.509226(2) 22.509227(1) 22.509226(2)

q=1 [9×10−8] [4×10−8] [9×10−8]

68S 1
2
→71S 1

2
a. 67.588473(2) 67.589048(4) 67.588478(1)

q=3 [3×10−8] [6×10−8] [1×10−8]

b. 67.589046(9) 67.589048(4)
[1×10−7] [6×10−8]

TABLE I. Summary of results. All measurement uncertain-
ties, statistical. Transitions below the double-line table di-
vider are magic. Quantities in brackets are ∆ν/ν. See text
for details.

qΩ1 is on the same order as the uncertainty in 2ν2p.
Our data show that in magic-lattice spectroscopy on

trapped atoms the statistical uncertainties are transform-
limited. Therefore, nonlinear magic-condition pondero-
motive spectroscopy improves the fractional frequency
resolution ∆ν/ν by increasing ν by a factor of q. For
a given atom-field interaction time T and transform-
limited transitions, ∆ν/ν improves from ≈ 1/(TΩ1) to
≈ 1/(qTΩ1). With improved stray electric field control,
the modulated lattice should be suitable for precision
measurement of (dipole-forbidden) atomic transitions at
high frequencies.

In conclusion, we have performed ponderomotive spec-
troscopy of Rydberg atoms by employing higher harmon-
ics of the lattice modulation. The nonlinearity intrinsic
to the lattice modulation has allowed us to reach tran-
sition frequencies ν near the sub-THz regime, with the
potential to exceed that limit, using modulation sources
that are much lower in frequency. Using magic lattices,
we have demonstrated Fourier-limited spectral lines with
a small ∆ν, as well as reduced light shifts. Being able
to access sub-THz atomic transitions with low ∆ν and
free from light shifts will improve the fractional resolu-
tion (∆ν/ν) of transition frequency measurements. Ap-
plications include precision measurement of atomic char-
acteristics [14] and physical constants (e.g. the Rydberg
constant [15], which could lead to verification of the pro-
ton size [3]).
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