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We present a fully perturbative mechanism that naturally generates mass hierarchies for the Stan-
dard Model (SM) fermions in a flavor-blind sector. The dynamics generating the mass hierarchies
can therefore be independent from the source of flavor violation, and may operate at a much lower
scale. This mechanism works by dynamically enforcing simultaneous diagonalization – alignment –
among a set of flavor-breaking spurions, as well as generating highly singular spectra for them. It
also has general applications in model building beyond the SM, wherever alignment between exotic
and SM sources of flavor violation is desired.

Introduction. The origin of the large mass and mix-
ing hierarchies among the Standard Model (SM) fermions
– the flavor puzzle – is a significant open problem in parti-
cle physics. Attempts to resolve this problem have taken
a variety of approaches. The most well-known is perhaps
the Froggatt-Nielsen mechanism [1], which assigns dif-
ferent charges of a pseudo-anomalous symmetry among
the SM generations. It thereby can physically distinguish
fermion flavors and generate a hierarchy of masses and
relative mixings for them. There exist multiple alter-
nate formulations or extensions of this general idea, that
assign various types of horizontal dynamics to the SM
generations (see, e.g., [2–9] among many others).

Approaches of this style intrinsically link the origin of
the mass and mixing hierarchies. This can lead to fla-
vor model-building challenges. For instance, considering
the first two quark generations, the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix element |Vcd| ∼
0.2, while the mass hierarchy mu,d/mc ∼ 10−3. Similarly
in the lepton sector, the charged leptons exhibit a large
mass hierarchy, while the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) mixing matrix elements are all O(1).

In this Letter we present a mechanism that dynami-
cally and naturally generates SM mass hierarchies with-
out charging the SM fermions under any Froggatt-Nielsen
style horizontal symmetries. The SM fermions need only
be charged under their U(3) flavor symmetries, and cou-
ple universally to the physics that generates their mass
hierarchies. This means that the scale at which the mass
hierarchies are generated, ΛH, can be independent from
the scale of flavor breaking, which could have interest-
ing phenomenological consequences. For example: ΛH

may be low enough to be detectable at the LHC; if ΛH is
nearby the electroweak scale, the Jarlskog invariant can
be large during the era of sphaleron transitions, opening
up a new avenue for significant electroweak baryogenesis.

Strategy. Specifically, we show how to dynamically
generate vacuum expectation values – spurions – for a
set of bifundamental flavon fields, {λα}, with the ‘aligned,
spectrally disjoint and rank-1 ’ pattern

〈λ1〉 = U diag
{
r1, 0, . . .

}
V † ,

〈λ2〉 = U diag
{

0, r2, . . .
}
V † , (1)

and so on, with U and V unitary matrices; the same for
each flavon. (This is inherently different to a rank-1 pro-
jector approach. See, e.g., [10].) Applied to the SM with
three generations, these spurions each break U(3)×U(3)-
type flavor symmetry to a different subgroup, such that
collectively the flavor symmetry is broken down to baryon
or lepton number. With spurions of the form in eq. (1),
one may then naturally construct mass hierarchies among
the SM fermions by assigning extra symmetries or dy-
namical effects horizontally among the flavons. For in-
stance, for a set of three up-type flavons {λt,c,u}, bifun-
damental under U(3)Q×U(3)U , the up-type SM Yukawa
terms could be generated from the irrelevant operator

H†Q̄L

{
st
ΛH

λt
ΛF

+
sc
ΛH

λc
ΛF

+
su
ΛH

λu
ΛF

}
UR , (2)

where ΛF ∼ 〈λα〉 is the scale of flavor breaking. The
sα are U(3)×U(3) singlet operators – in this sense they
are flavor-blind – that encode a hierarchy 〈st〉 � 〈sc〉 �
〈su〉, generated at the scale ΛH. The up-type quark mass
hierarchies follow immediately from the pattern (1), in-
dependently of the structure of the matrices, U and V ,
that encode flavor-violating effects. (We focus here on
up-type quarks, but the generalization to the down-type
quarks and leptons follows analogously.)

This approach contrasts with Froggatt-Nielsen style
horizontal charges, that are assigned directly to the SM
fermions. Instead, the SM fermions are coupled univer-
sally to the flavor-blind, hierarchy-generating operators
sα. While 〈sα〉/〈sβ〉 is fixed by the observed SM mass
hierarchies, and while the flavor-breaking scale, ΛF, is
bounded below by precision flavor constraints, the hi-
erarchy scale ΛH is unconstrained by these effects, and
could be quite low.

The particular scenario we have in mind is to consider
three sectors: a SM sector, a ‘flavor’ sector, and a ‘hierar-
chy’ sector. The dynamics of the flavor sector breaks the
U(3)Q×U(3)U flavor symmetries at a scale ΛF, by gener-
ating spurions of the form (1) for the three flavons λt,c,u.
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FIG. 1. Left: Schematic representation of the low energy
effective theory. The lines represent the irrelevant interactions
in (2). Right: Sample UV completion, in which ΛH and ΛF

are identified with the mass scales of φα and χα respectively.

Suppose that these flavons also carry parity symmetries
Pα : λα → −λα. These are broken by Pα-odd, flavor sin-
glet spurions 〈sα〉, generated in the hierarchy sector at
ΛH. The SM, flavor and hierarchy sectors then interact
through the three-way portal in (2). We show a schematic
representation of this scenario in Fig. 1. We also show a
sample UV completion, that generates the operator (2)
at tree level, in which sα are a set of scalar fields. (Note

that other operators like H†Q̄Lsαλαλ
†
βλβUR are annihi-

lated by the pattern (1).)
In the remainder of this Letter we will first specify the

algebraic conditions that automatically ensure that a set
of matrices is aligned, spectrally disjoint and rank-1. We
proceed to show that the most general renormalizable
potential for the λα has a minimum that enforces these
algebraic conditions. With this mechanism in hand, we
will present an example of a set of horizontal discrete
symmetries on the spurions that can generate the SM
mass hierarchies. We will also show how to construct an
approximate CKM matrix within this framework.

Algebraic Conditions. Consider two tensors λiI and
ξiI charged under the bifundamental of an U(n)× U(n)
flavor symmetry group. That is i, I = 1, . . . , n are indices
of the (anti)fundamental representations. We adopt a
matrix notation that encodes contractions of indices of
the same type. For instance (λξ†)ij ≡

∑
I λiIξ

∗
jI and

(λξ†)†ij ≡ (ξλ†)ij , and similarly for uppercase indices.
Hereafter we shall not distinguish between the two index
types, but remember instead that λα can contract on the
right or left with λ†β , but not with λβ , and that λ†λ lives

in a different space to λλ† etc.
Alignment – Suppose that

[λ, ξ]1 ≡ λ†ξ − ξ†λ = 0 , [λ, ξ]2 ≡ λξ† − ξλ† = 0 , (3)

so that λ†ξ and λξ† are both Hermitian. This is neces-
sary and sufficient to ensure that λ and ξ may be simul-
taneously biunitarily real diagonalized by the same two
unitary matrices. I.e.

λ = UDλV
† and ξ = UDξV

† , (4)

with Dλ and Dξ diagonal and real: we say λ and ξ are
‘aligned ’. This result extends to a set of k ≥ 2 tensors λα
that all satisfy the condition (3) pairwise. We include a

proof in the appendix. (See also Ref. [11], which proves
a more general statement.)

Spectrally Disjoint – Suppose we further require

λ†ξ = 0 and λξ† = 0 . (5)

This condition subsumes eq. (3), and so λ and ξ must be
aligned. When combined with eq. (4) this condition fur-
ther implies DλDξ = 0, or in index notation dλidξi = 0,
for each i, where dλi and dξi are the real diagonal ele-
ments of Dλ and Dξ. Hence under the condition (5), λ
and ξ are required to be aligned and ‘spectrally disjoint ’,
in the sense that dξi = 0 whenever dλi 6= 0, and vice
versa. The converse statement follows trivially. Eq. (5)
extended pairwise to a set of k tensors is therefore suffi-
cient and necessary for them all to be aligned and spec-
trally disjoint.

Rank-1 – A maximal set of n linearly independent
tensors that satisfy (5) pairwise, are automatically also
‘rank-1 ’, in the sense that each tensor must have a single
non-zero eigenvalue. More generally, any single tensor λ
is rank-1 if and only if

Tr(λ†λ)2 − Tr(λ†λλ†λ) = 0 . (6)

In index notation this becomes
∑
i<j |dλi|2|dλj |2 = 0,

and the only non-trivial solution is |dλi0 | > 0 and
dλi6=i0 = 0 for some i0 ∈ {1, . . . n}. Hence λ is rank-
1, and the converse argument is trivial. A set of tensors
therefore has the aligned, spectrally disjoint and rank-1
structure (1) if and only if the algebraic conditions (5)
and (6) are satisfied pairwise and individually on the set,
respectively.
Potential. We now proceed to construct a potential

that ensures (5) and (6) hold dynamically for a set of up-
type flavons, λα ∈ {λt, λc, λu}. The parities Pα : λα →
−λα restrict the form of the renormalizable potential,
such that it may only involve terms containing at most
two different flavons. The full potential for k ≥ 2 flavons
can therefore be constructed from a sum of single-field
potentials and two-field potentials.

Single-field potential – The most general flavor-
invariant renormalizable potential for a single flavon is

V α1f = µα1

∣∣∣Tr(λ†αλα)− r2α
∣∣∣2

+ µα2

[
Tr(λ†αλα)2 − Tr(λ†αλαλ

†
αλα)

]
= µα1

∣∣∣∑
i

|dαi|2 − r2α
∣∣∣2+ 2µα2

∑
i<j

|dαi|2|dαj |2 . (7)

Both operators are positive semi-definite. For µα1,2 >
0, eq. (6) is therefore satisfied at the minimum of this
potential. The particular solution is |dαi0 | = rα for some
i0 ∈ {1, . . . n} and dαi6=i0 = 0. Hence λα is rank-1.

Two-field potential – The most general CP-conserving,
flavor- and parity-invariant renormalizable potential for
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two fields λα and λβ can be written as

V αβ2f = µαβ3

[
Tr(λ†αλα) + Tr(λ†βλβ)− r2α − r2β

]2
(8)

+
∑
±
µαβ4,±

∣∣∣Tr
[
λ†αλβ ± λ

†
βλα

]∣∣∣2
+
∑
i=1,2

µαβ5,iTr
[
[λα, λβ ]†i [λα, λβ ]i

]
+ µαβ6

{
Tr
[
(λαλ

†
β)†(λαλ

†
β)
]

+ Tr
[
(λ†αλβ)†(λ†αλβ)

]}
.

The operators in eq. (8) are all manifestly positive semi-
definite. With all the coefficients positive, the global
minimum of the potential is thus V2f = 0. The op-
erator corresponding to µ3 vanishes if both λα and λβ
are in the vacua of their single field potentials (7). The
operator corresponding to µ6 is non-zero if and only if
λ†αλβ = λαλ

†
β = 0, and all remaining operators also van-

ish at this condition. Hence the global minimum of V1f
and V2f together is located at the aligned, spectrally dis-
joint and rank-1 conditions (5) and (6).

Extended to a set of k fields, {λα}, the pairwise po-
tential

Vpp =
∑
α

V α1f +
∑
α<β

V αβ2f , (9)

with couplings all positive thus dynamically generates a
set of spurions of the desired pattern (1). The flat di-
rections of its minimum are parametrized solely by the
unitary matrices U and V , which simultaneously rotate
{λα} as in (1). Although the potential appears to contain
a very large number of free parameters, the only signifi-
cant parameters for the low energy physics are the radial
norms rα, as long as all other parameters are positive.

Parity breaking effects – Breaking of the Pα symme-
tries in the hierarchy sector can radiatively induce parity-
odd operators in the potential, e.g. Tr(λ†αλβ). Since all
such operators are invariant under the simultaneous ro-
tation of the set {λα}, they do not destabilize the flat
directions of the vacuum. In addition, these parity-odd
terms are suppressed by (〈sα〉〈sβ〉/Λ2

H) for every pair
of parity symmetries Pα,β that they break, and can be
further two-loop suppressed by the SM portal (2) (see
the UV completion in Fig. 1 for an example). For the
SM quarks, the largest parity-odd contribution is then
∼ (mcmt/v

2)/(16π2)2 � mu/mt, the largest hierarchy
in the system. All such terms may then be neglected.

Two-sector potential – Now consider a second set
of three down-type flavons λα̂ ∈ {λb, λs, λd}, that are
charged under flavor U(3)Q × U(3)D. We distinguish
these from the up-type flavons by their hatted index. The
common U(3)Q group admits up-down cross terms

V αα̂mix = ναα̂1 Tr
[
(λ†αλα̂)†(λ†αλα̂)

]
+ ναα̂2

[
Tr(λ†αλα) + Tr(λ†α̂λα̂)− r2α − r2α̂

]2
, (10)

into the most general CP-, flavor- and parity-invariant
potential, i.e. V up

pp + V down
pp + Vmix. Both operators are

positive semi-definite, and we assume ν1,2 > 0. The ν2
term vanishes at the vacua of Vpp, but the ν1 terms can-
not vanish simultaneously with the µ6 terms, since one
cannot non-trivially satisfy λ†αλβ = λ†αλα̂ = λ†α̂λβ̂ = 0.

Since Vmix respects λαλ
†
β → −λαλ

†
β for α 6=

β, it cannot introduce tadpoles that shift the non-
trivial stationary points of Vpp from the {λαλ

†
β =

0}α6=β contour. Moreover, the ν1 term has curvature

∂2Vmix,ν1/∂λα∂λ
†
β ∝ δαβ . Provided ν1 is somewhat small

compared to µ6 and µ4,+, this term cannot destabilize
an existing Vpp minimum. No symmetries, however, for-
bid tadpoles that shift the location of the radial vacuum
Tr(λαλ

†
α). Hence the total potential retains local non-

trivial minima somewhere on the {λαλ
†
β = 0}α 6=β con-

tour, i.e. at the aligned, spectrally disjoint configuration.
For ναα̂1 > 0, the cross terms typically squeeze the loca-
tion of the radial vacuum to Tr(λαλ

†
α) = r̄2α < r2α. Pro-

vided ναα̂1 are not too large compared to the µα1 terms,
the vacuum remains non-trivial, i.e. 〈λα〉 6= 0.

It remains to check that the unit rank of 〈λα〉 is not
spoiled. The desired configuration (1) is explicitly

λα = UUDαV
†
U , λα̂ = UDDα̂V

†
D , (11)

where we choose Dα to be the rank-1 diagonal matrix
whose α-th diagonal entry, dα 6= 0. At this configuration
the cross terms become

V αα̂mix = ναα̂1 d2αd
2
α̂

∣∣Vαα̂ckm

∣∣2 , (12)

where Vαα̂ckm is the αα̂-th element of Vckm ≡ U†DUU , the
usual unitary up-down mixing matrix. Unitarity forbids
all these terms from being simultaneously zero. This
term also lifts the UU and UD flat directions of the po-
tential (9). That is, it determines the texture of Vckm.

Perturbing the βth diagonal zero entry of Dα by ε cor-
responds to perturbing the rank-1 (or disjoint) configura-
tion. From eqs. (10) and (11) this generates only anO(ε2)

correction δV αα̂mix = ε2ναα̂1 d2α̂|V
βα̂
ckm|2. One may similarly

check that in the vacuum of eq. (12), O(ε) perturbations
of the alignment condition arise in Vmix at O(ε2), in con-
cordance with the argument above. Thus, provided µ6,
µ4,+ & ν1 > 0, there remains a local minimum at the
aligned, spectrally disjoint, rank-1 configuration for each
set. In contrast, note that perturbing the non-zero ele-
ment dα → dα+ ε leads to a O(ε) tadpole, as above, that
shifts the radial vacuum from away from rα.

SM Hierarchies. Quark Sector – In general, one is
free to choose the mechanism at work in the hierarchy
sector. We present here an example which makes use of
horizontal discrete symmetries to generate the SM quark
hierarchies.

We assign an integer charge pα (pα̂) to each λα (λα̂)
under its own individual discrete symmetry Z2pα (Z2pα̂),
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except for λt. These discrete symmetries act as the par-
ity symmetries Pα on the flavons, required to secure the
potential in eqs. (9) and (10).1 The suppression of parity-
odd terms is not spoiled if only a single flavon – λt in this
case – in each set does not carry a parity. For each sym-
metry Z2pα (Z2pα̂) we further assign a field σα (σα̂), be-
longing to the hierarchy sector, with unit discrete charge.
This produces the irrelevant operators

H†Q̄L

{
λt
ΛF

+

[
σc
ΛH

]pcλc
ΛF

+

[
σu
ΛH

]puλu
ΛF

}
UR

+HQ̄L

{[
σb
ΛH

]pbλb
ΛF

+

[
σs
ΛH

]psλs
ΛF

+

[
σd
ΛH

]pdλd
ΛF

}
DR . (13)

There is no Z2pt nor σt, so that the top Yukawa is unsup-
pressed. Applying the pairwise potential (9) and (10) to
both up- and down-type flavons, we obtain a complete set
of aligned, spectrally disjoint and rank-1 spurions as in
eq. (11). I.e. Dt = diag{0, 0, r̄t} and so on, with r̄α . ΛF

the radial location of the vacuum.
If we further assume an approximately uniform scale of

breaking for all the discrete symmetries 〈σα〉/ΛH ∼ ε – a
natural assumption – then an 〈sα〉 ∼ ΛHε

pα hierarchy is
generated by the discrete charges pα alone. For example,
one could make the discrete charge choices

pc = 2 , pu = 5 , pb = 2 , ps = 3 , pd = 5 . (14)

For ε ∼ 0.1, this approximately reproduces the SM quark
mass hierarchies.

For anarchic ναα̂1 > 0, the potential (12) ensures that
the flavor mixing matrix settles to a sparse unitary ma-
trix. One can, however, generate an approximation of the
observed CKM matrix with some special choices. Sup-
pose there exists a symmetry which requires the cou-
plings ναα̂i and µαβi to be universal in α and α̂, while
rt > ru = rc and rb > rd = rs. One may show the
potential is minimized for a mixing matrix

Vckm =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 , (15)

which has a single, arbitrarily large, mixing angle for the
first two generations. Reproducing the rest of the CKM
likely requires the introduction of further small pertur-
bations, perhaps arising from irrelevant operators or in-
teractions coupling to U(3)U × U(3)D. We emphasize

1 One could have instead assigned a unique U(1)α symmetry
to each λα. This generates the same potential, but with ex-
tra suppressions that reduce the µ4,±, µ5,i and µ6 terms to

µ6,1Tr[(λαλ
†
β)
†(λαλ

†
β)] + µ6,2Tr[(λ

†
αλβ)

†(λ†αλβ)]. The vacuum

remains unchanged for µ6,i > 0.

that this flavor-violating physics is independent from the
dynamics of the hierarchy sector.

Lepton Sector – A similar process may be applied to
the SM leptons, for HL̄LER and H†L̄LNR yukawas anal-
ogous to (2). For ναα̂i , µαβi , and rα all universal in α and
α̂, the PMNS mixing matrix may have arbitrary O(1) en-
tries. (A different mechanism, however, may be respon-
sible for the extreme overall suppression of the neutrino
yukawas.)

The degeneracy of two of the neutrino masses in the
case of an inverted hierarchy [12] can be explained if this

sector has only two flavons, λ and ξ, but with µξ2 < 0,

2µ4,+ + µ6 � |µξ2|/2, and still µλ2 > 0. In this scenario,

µξ2 < 0 relaxes the rank-1 condition, such that the ξ
spurion eigenspectrum prefers instead to be degenerate.
When combined with the more energetically favored dis-
joint condition (5) enforced by µ6 and µ4,+, one finds

〈λ〉/ΛF ∼ U diag
{

0, 0, 1
}
V † ,

〈ξ〉/ΛF ∼ U diag
{

1, 1, 0
}
V † . (16)

One may then obtain two degenerate Dirac neutrino
masses and one much lighter.

BSM Applications. In the context of beyond SM
(BSM) model building, it is often desirable to obtain new
physics (NP) whose flavor-breaking effects are aligned
with, but not proportional to, the SM yukawas. This
is more general than minimal flavor violation, and can
be achieved dynamically with the Vpp potential.

Assume the existence of an SM spurion λsm ∼
U diag{δ′, δ, 1}V †, with δ′ � δ � 1, and a second field
λnp whose vacuum expectation value represents a flavor-
breaking NP spurion. We apply the potential (9) for
these two spurions, but treat λsm as a static background
field, fixed by some high scale physics. For λsm and λnp
to be aligned, it suffices that the condition (3) is sat-
isfied: If µ5,i > 0 it is energetically favorable for λnp to
settle such that the corresponding operators vanish. This
automatically results in alignment with λsm.

Since λsm has maximal rank, it is not possible for the
two spurions to be spectrally disjoint. In the limit µnp

1 >
|µnp

2 | � µ4,+, µ6, taking all constants positive except
µnp
2 , the vacuum solution is either one of

〈λnp〉/ΛF ∼ U diag
{

1, 0, 0
}
V † ,

〈λnp〉/ΛF ∼ U diag
{

1, 1, 1
}
V † , (17)

corresponding to whether µnp
2 > 0 or µnp

2 < 0 respec-
tively. These two spurions are linearly independent and
aligned. As such one can span the whole space of possi-
ble aligned NP spurions by taking linear combinations of
these two spurions and λsm.

Conclusions. We have shown that the SM fermion
mass and mixing angle hierarchies may have autonomous
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origins, such that they may arise at vastly different phys-
ical scales. This result is a consequence of a new mecha-
nism, in which the vacuum of the general flavon field po-
tential dynamically generates an aligned, spectrally dis-
joint, and rank-1 structure for the U(3) × U(3) flavor-
breaking spurions. Of particular significance, this mech-
anism permits the physics responsible for the SM quark
mass or yukawa hierarchies to operate close to the elec-
troweak scale, without being in conflict with precision
flavor constraints. It may therefore be experimentally
accessible at LHC. It also may have broad applications
in the construction of flavor-safe, natural BSM theories
or for electroweak baryogenesis.
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