
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Compactness of Neutron Stars
Wei-Chia Chen and J. Piekarewicz

Phys. Rev. Lett. 115, 161101 — Published 16 October 2015
DOI: 10.1103/PhysRevLett.115.161101

http://dx.doi.org/10.1103/PhysRevLett.115.161101


On the compactness of neutron stars

Wei-Chia Chen1, ∗ and J. Piekarewicz1, †

1Department of Physics, Florida State University, Tallahassee, FL 32306
(Dated: September 24, 2015)

Recent progress in the determination of both masses and radii of neutron stars are starting
to place stringent constraints on the dense matter equation of state. In particular, new theoretical
developments together with improved statistical tools seem to favor stellar radii that are significantly
smaller than those predicted by models using purely nucleonic equations of state. Given that the
underlying equation of state must also account for the observation of 2M� neutron stars, theoretical
approaches to the study of the dense matter equation of state are facing serious challenges. In
response to this challenge, we compute the underlying equation of state associated with an assumed
mass-radius template similar to the “common radius” assumption used in recent studies. Once such
a mass-radius template is adopted, the equation of state follows directly from the implementation
of Lindblom’s algorithm; assumptions on the nature or composition of the dense stellar core are not
required. By analyzing mass-radius profiles with a maximum mass consistent with observation and
common radii in the 8 to 11 km range, a lower limit on the stellar radius of a 1.4M� neutron star
of RNS&10.7 km is required to prevent the equation of state from violating causality.

PACS numbers: 26.60.-c, 26.60.Kp, 21.60.Jz

How does subatomic matter organize itself and what
phenomena emerge is one of the overarching questions
guiding the field of nuclear physics [1]. In the case of
atomic nuclei, the quest to answer this question requires
understanding the nature of the nuclear force and the
limits of nuclear existence. In the case of extended nucle-
onic matter, this involves elucidating the nature of neu-
tron stars and dense nuclear matter. In this letter we
focus on the latter.

Owing to the long-range nature of the Coulomb force,
extended nucleonic matter must be electrically neutral.
As a result, dense nuclear matter must be by necessity
neutron-rich. This is because the electronic contribution
to the energy increases rapidly with density, so electron
capture becomes energetically advantageous. Given that
such extreme conditions of density and isospin asymme-
try can not be realized in terrestrial experiments, neutron
stars have become unique laboratories for the exploration
of dense matter. This situation has created a strong syn-
ergy between nuclear physics and astrophysics, that has
been cemented even further through an intimate inter-
play between theory, experiment, and observation [2]. In-
deed, powerful telescopes operating at a variety of wave-
lengths drive new theoretical and experimental efforts
which in turn suggest new observations.

A recent example of such a unique synergy is how
accurate measurements of massive neutron stars [3, 4]
have informed nuclear models that fall under the gen-
eral rubric of density functional theory. Density func-
tional theory (DFT) offers a comprehensive—and likely
unique—framework to describe strongly interacting nu-
clear many-body systems ranging from finite nuclei to
neutron stars. Rooted on the seminal work by Kohn
and collaborators [5], DFT shifts the focus from the com-
plicated many-body wave function to the much simpler

one-body density. The implementation of DFT to nuclear
physics requires that the parameters of the model—which
encode some of the complicated many-body dynamics—
be determined by fitting directly to experimental data.
In this regard, the accurate measurement of neutron star
masses has been vital to the accurate calibration of some
modern energy density functionals [6–8].

Whereas the determination of neutron star masses is
accurate and beyond question, attempts to reliably ex-
tract stellar radii [9–11] have been hindered by large sys-
tematic uncertainties that resulted in an enormous dis-
parity in stellar radii—ranging from as low as 8 km [9]
all the way to 14 km [11]. It appears, however, that since
those first analyzes were performed, the situation has sig-
nificantly improved in the last few years through a bet-
ter understanding of systematic uncertainties, important
theoretical developments, and the implementation of ro-
bust statistical methods [12–16]. Although a consensus
has yet to be reached, these recent studies seem to favor
stellar radii in the 9–11 km range. Particularly intriguing
among these are the results by Guillot and collaborators
that suggest a “common radius” of RNS =9.1+1.3

−1.5 km for
all five quiescent low mass x-ray binaries used in their
analysis [12]; this common-radius value has been slightly
revised to RNS = (9.4 ± 1.2) km [15]. What makes this
result especially provocative is that satisfying the small
radius and large mass constraints simultaneously is enor-
mously challenging. Indeed, to our knowledge no opti-
mized energy density functional can simultaneously re-
produce both of these constraints. And from the very
large number of models available in the literature [17],
we are aware of only a few that account for both [18–
20]. From these, the model due to Wiringa, Fiks, and
Fabrocini [18] relies on a microscopic approach based on
the Argonne v14 (AV14) nucleon-nucleon potential sup-
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plemented with the Urbana VII (UVII) three-nucleon po-
tential. This model predicts a maximum stellar mass of
2.13M� and a “common radius” of RNS'10.4 km. The
other theoretical approach due to Hebeler and collabo-
rators [19, 20] is also microscopic in nature, but instead
uses nuclear interactions derived from chiral effective field
theory. In particular, their softest equation of state is
consistent with the ∼2M� limit and predicts a radius as
low as R1.4 =9.7 km for a 1.4M� neutron star [20].

In this letter we aim to elucidate the nature of neutron
star matter by relying on a powerful result first proven
by Lindblom more than two decades ago [21]. It is a well
known fact that all stellar profiles may be determined
from the Tolman-Oppenheimer-Volkoff (TOV) equations
once an equation of state P =P (E) relating the pressure
P to the energy density E is supplied. That is, given an
equation of state (EOS), the TOV equations

dP (r)

dr
= −G

c2

(
E(r) + P (r)

)(
M(r) + 4πr3P (r)

c2

)
r2
(

1− 2GM(r)
c2r

) , (1a)

dM(r)

dr
=

4πr2E(r)

c2
, (1b)

can be solved once a value for the central pressure P (0)=
Pc and enclosed mass M(0)=0 are specified at the origin.
In particular, the stellar radius R is determined from the
condition P (R) = 0 and the corresponding stellar mass
as M = M(R). In this manner, the EOS generates the
mass-radius (MR) relationship for neutron stars. What
Lindblom was able to prove and implement is that the
inverse also holds true: knowledge of the MR relation
uniquely determines the neutron star matter equation of
state [21].

In the spirit of Lindblom’s approach, we now proceed
to outline the methodology required to obtain the unique
equation of state associated with an assumed MR tem-
plate that closely resembles the “common-radius” hy-
pothesis adopted in Ref. [12]. This choice of template is
the only model assumption made in this work; no addi-
tional assumptions on the nature or composition of dense
matter are required. For alternative attempts at obtain-
ing generic model-independent constraints see Ref. [22]
and references contained therein.

The particular MR template adopted in this work fol-
lows from our latest optimization: a relativistic energy
density functional labeled “FSUGarnet” [8]. Such a tem-
plate, among many others depicted in Fig.1, is displayed
with the purple solid line containing a few additional cir-
cles. FSUGarnet was optimized with inputs from the
ground-state properties of finite nuclei, their monopole
response, and a maximum neutron star mass consistent
with observation. Yet, even after such an optimization,
extrapolations to the high-density domain remain highly
uncertain. However, it is worth underscoring that rela-
tivistic density functionals provide a Lorentz covariant—

and hence causal—framework that becomes critical as
one extrapolates to the high densities encountered in
the stellar interior. Of particular relevance to this work
are predictions for the maximum neutron star mass and
radius of a 1.4M� neutron star; FSUGarnet predicts:
Mmax = (2.07 ± 0.02)M� and R1.4 = (13.0 ± 0.1) km.
Although such a stellar radius appears to significantly
exceed some of the preferred limits, the predicted EOS is
relatively soft in the immediate vicinity of nuclear matter
saturation density. This is relevant as the pressure in the
neighborhood of twice nuclear matter saturation density
sets the overall scale for stellar radii [17].
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FIG. 1: (Color online) Mass-Radius profiles as predicted by
the microscopic model of Ref. [18] and by the four relativistic
density functionals considered in the text. As a check, the
circles on top of the FSUGarnet profile were obtained using
an EOS extracted from Lindblom’s algorithm. Also shown
are the four profiles R8–R11 generated from the FSUGar-
net template and having radii of 8–11 km, respectively. The
horizontal band shows the observational constraints from the
mass measurements reported in Refs. [3, 4], whereas the ver-
tical band displays the constraint on stellar radii published in
[15]. Also shown are regions excluded on purely theoretical
grounds: BH is the black hole limit, L&P is the causality con-
straint obtained in Ref. [17], and the grey region defines the
causality constraint obtained in this work.

Having defined the underlying template, additional
MR curves may be easily generated by simply shifting
the full FSUGarnet profile to the desired radius. Indeed,
the curves labeled R8–R11 in Fig. 1 were generated in
precisely this manner and are characterized by stellar
radii of 8–11 km (rather than 13 km) for a 1.4M� neu-
tron star. In the case of these four curves, the underly-
ing EOS is unknown. Besides the FSUGarnet template,
MR predictions generated with other relativistic density
functionals are also included for comparison. These range
from NL3 [23, 24] and FSUGold [25] that were optimized
without incorporating neutron star information, to the
more recent FSUGold2 parametrization that includes the
2M� constraint in the calibration [7]. Note that all these
functionals provide accurate descriptions of a variety of
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ground-state properties of finite nuclei. Finally, displayed
with the red line is the MR relation predicted by the mi-
croscopic formalism of Wiringa, Fiks, and Fabrocini [18].
With the exception of FSUGold, all MR relations are con-
sistent with the 2M� limit depicted in the figure with the
narrow magenta band. However, none of the relativistic
density functionals satisfy the common-radius constraint
of Ref. [15] depicted in Fig. 1 by the vertical (cyan) band.

Our next step is to use Lindblom’s approach to ob-
tain the EOS corresponding to the R8–R11 profiles dis-
played in Fig. 1. Briefly, the “inversion” procedure is
implemented as follows. First, one assumes complete
knowledge of the EOS up to a pressure Pi and energy
density Ei capable of supporting neutron stars up to a
mass of about 0.4M�. Specifically, using such an EOS
and a central pressure of Pc=Pi one generates, through
the TOV equations, a neutron star of mass Mi≈0.4M�
and radius Ri. Second, one steps along the mass-radius
trajectory by selecting a neutron star of mass Mi+1>Mi

and radius Ri+1 whose central pressure Pc and energy
density Ec are to be determined. To compute Pc and
Ec, the TOV equations are integrated inwards from the
surface to the core, with boundary conditions given by
P (Ri+1) = 0 and M(Ri+1) =Mi+1. Hydrostatic equilib-
rium guarantees that as one moves towards the interior
of the star, the pressure will continue to increase until the
maximum known pressure Pi will be reached at a certain
radius ri located near the center of the star. Given that
ri is close to the origin, one may use suitable series ex-
pansions to determine the central pressure Pc and energy
density Ec in terms of known quantities, i.e., mass, pres-
sure, and energy density, at the small radius ri [21]. In
this manner, after one iteration the EOS is extended from
(Pi, Ei) to (Pi+1, Ei+1)≡ (Pc, Ec). In the next iteration,
one proceeds in exactly the same fashion, namely, one
moves another step along the mass-radius trajectory and
repeats the algorithm with the newly augmented equa-
tion of state. After the whole mass-radius trajectory is
sampled, the entire high-density component of the equa-
tion of state is mapped out. Testing the reliability and
accuracy of Lindblom’s inversion algorithm is fortunately
very simple. To start, one uses a known EOS—such as
the one predicted by FSUGarnet—to compute its asso-
ciated MR relation. Then, one applies Lindblom’s algo-
rithm to extract the “new” EOS directly from the MR
profile. Finally, one verifies that both the new EOS and
the resulting MR profile are consistent with the originals.
The result of such a test is illustrated in Fig.1 for the case
of FSUGarnet; the circles represent the results obtained
with an EOS extracted from Lindblom’s algorithm.

Having verified the accuracy of Lindblom’s algorithm,
we can now obtain the equations of state that generate
the R8–R11 MR profiles assumed in Fig. 1. To do so,
the low-density component of each of the equations of
state needed to initialize Lindblom’s algorithm must be
adjusted to match smoothly to the assumed MR profile
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FIG. 2: (Color online) Equations of state associated to the
mass-radius profiles displayed in Fig. 1. In the case of the
R8–R11 profiles, the equations of state were obtained from
Lindblom’s algorithm [21]. Also shown is the P =E line which
demarcates the boundary beyond which an equation of state
becomes ultrabaric. Equations of state that cross the line
become superluminal at considerably lower energy densities.

up to M . 0.4M�. Note that at low densities neutron
star matter consists of a Coulomb crystal of neutron-rich
nuclei (outer crust) followed by the putative “nuclear
pasta” (inner crust). In constructing the EOS at low
densities, we have relied on the BPS parametrization for
all models—including R8–R11. Thus, at very low den-
sities the EOS is the same for all profiles and consistent
with known physics. For the nuclear pasta EOS, which
remains an open question, we resort to a polytropic treat-
ment of the EOS in that region. The polytropic EOS is
then smoothly connected to the high-density EOS gener-
ated by Lindblom’s algorithm. As in the case of FSUGar-
net, such a procedure was validated by ensuring that the
extracted EOS reproduces the assumed MR curve. This
lends credence to our implementation of the algorithm
given that the mapping between the MR profile and the
underlying EOS is unique.

The resultant equations of state, along with those pre-
dicted by the non-relativistic and relativistic models, are
displayed in Fig. 2. Note that among the relativistic den-
sity functionals, FSUGarnet displays the softest EOS at
low energy densities (E . 200 MeV/fm3). For reference,
FSUGarnet predicts a pressure for pure neutron matter
at saturation density of PPNM = (2.60 ± 0.08) MeV/fm3.
Given that the pressure in the vicinity of twice nuclear
matter saturation density sets the overall scale for stellar
radii [17], FSUGarnet generates the mass-radius profile
with the smallest radii; in contrast, NL3 with the stiffest
EOS generates the largest stellar radii. However, since
the maximum neutron star mass is sensitive to the EOS
at higher densities, FSUGold (with Mmax =1.72M�) be-
comes the softest beyond E ≈200 MeV/fm3.
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Also displayed in Fig. 2 is the P =E line which marks
the boundary beyond which an equation of state becomes
ultrabaric [26, 27]. Being rooted on a Lorentz covariant
framework, the predictions from all relativistic density
functionals lie safely below the ultrabaric line. However,
this is not the case for the R8–R11 profiles. Could this be
an indication that such profiles violate causality? That
is, could the speed of sound exceed the speed of light in
the high-density cores of these extremely compact stars?
To test if a given EOS respects causality, we compute
the speed of sound in the medium c2s/c

2 = dP/dE and
determine whether a point exists at which the EOS be-
comes superluminal. Such a point (Pc, Ec) determines
the central pressure and energy density of the heaviest
neutron star that can be supported by the given EOS;
beyond such a mass, the EOS required to support the
star becomes acausal.
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FIG. 3: (Color online) As in Fig. 2, but now on a reduced lin-
ear scale, we display some of the equations of state considered
in this work; for simplicity, only NL3 is included as a repre-
sentative member of the relativistic density functionals. With
the exception of NL3, which is causal at all densities, all other
equations of state become superluminal at the pressure and
energy density indicated by the blue squares. In turn, these
values determine the central pressure and energy density of
the heaviest star that may be supported by a causal EOS.

For clarity, we display in Fig. 3 the various equations
of state on a reduced linear scale; only NL3 is included as
a representative member of the relativistic density func-
tionals. The figure clearly indicates that with the excep-
tion of NL3, all five equations of state become superlu-
minal much before they cross into the ultrabaric region.
The pressure and energy density at which the EOS be-
comes superluminal are depicted by the blue squares. In
turn, these values determine the central pressure and en-
ergy density of the most massive neutron star that may
be supported by a causal EOS; beyond this value the
mass-radius relation becomes unphysical. We found that
the value of this critical mass Mcrit decreases rapidly as
the common radius decreases. Specifically, although in

the case of the R11 template we find Mcrit = 2.06M�,
and thus consistent with the present 2M� limit [3, 4],
we obtain Mcrit/M� = 1.83, 1.57, 1.26, for R10, R9, and
R8, respectively. Note that the microscopic model of
Wiringa, Fiks, and Fabrocini violates causality beyond
Mcrit ≈ 1.96M� [18]. These values of Mcrit define the
lower boundary of the grey region labeled as “Causality
this work” in Fig. 1. We thus conclude, within the scope
of the adopted MR template, that in order to satisfy the
current 2M� limit, the stellar radius of a 1.4M� neu-
tron star must exceed 10.7 km. This represents the main
finding of our work.

To place our newly developed constraint on the proper
context, we display in Fig. 1 two other commonly used
limits. The weakest of the two (labeled “BH”) represents
the black hole limit that precludes a neutron star of mass
M from having a radius R equal to its Schwarzschild ra-
dius. This constraint has no impact on the mass-radius
profiles considered in this work. A more stringent con-
straint (labeled “L&P”) follows from an analysis by Lat-
timer and Prakash [17, 28] that uses a realistic EOS up
to a certain value of the energy density that is then
matched to a causally limited EOS. By doing so, they
obtain a limit on the stellar compactness that may be
written as R&2.83GM/c2. Although stronger than the
BH constraint, this causality limit does not affect the re-
cent analysis by Guillot and Rutledge [15]. Indeed, the
L&P limit for a 9 km neutron star is 2.16M�. On the
other hand, our analysis provides an even more strin-
gent constraint of 1.57M�, and pushes the minimum ra-
dius to 10.7 km—barely consistent with the upper limit
quoted in Ref. [15], but fitting comfortably within the
10.8+0.5

−0.4 km range given in the very recent work by Özel
et al. [16].

Given that the MR profile is the central assumption
made in this work, it is pertinent to ask how sensitive
are our conclusions to the underlying shape. As shown in
Fig. 4, a constant-radius profile is characterized by a large
(indeed infinite) derivative in the mass region of about
0.6 .M/M� . 1.6. If this shape is changed by keeping
the slope large but now negative (i.e., an increase in mass
is accompanied by a reduction in the radius) then the
compactness will increase and the underlying EOS will
become superluminal even earlier. However, if instead
the slope becomes positive (i.e., an increase in mass is
followed by an increase in radius) then it becomes harder
to assess whether such an MR profile will generate an
acausal EOS; such a shape is displayed by the green solid
line in Fig. 4. Still, our results suggest that if variations to
the standard template are not overly dramatic, our main
conclusions remain valid. Indeed, the minimum stellar
radius got shifted by only 0.1 km; from 10.7 to 10.6 km.

In summary, motivated by the latest progress in mea-
suring neutron star radii, which combined with measure-
ments of massive neutron stars provide critical insights
into the dense matter equation of state, we have exam-
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FIG. 4: (Color online) Sensitivity to small variations to the
standard MR template. Here the R10 template (dashed line)
is modified to produce two additional MR profiles, both with
a radius of 10 km for a 1.4M� neutron star. The right portion
of the plot displays the critical mass beyond which the under-
lying EOS becomes superluminal. Finally, the labels indicate
the minimum radius required to support a 2M� neutron star
with a causal EOS of the given shape.

ined whether neutron stars may be as compact as recently
suggested. To do so, we relied on a powerful algorithm
developed by Lindblom to obtain the equation of state
from knowledge of the mass-radius relationship. That is,
given a MR profile, the underlying EOS may be obtained
without any assumption on the nature or composition of
the dense stellar core. Thus, all model dependence lies
in the assumed MR profile, which in the present study
was chosen to have a nearly constant radius shape. Us-
ing such a template, MR profiles were constructed with a
maximum mass of 2.1M� and with common radii span-
ning the 8 to 11 km interval. Using Lindblom’s algorithm,
the equation of state associated with each of these MR
profiles was obtained. Further, by imposing causality,
namely, by enforcing that the speed of sound be less
than the speed of light, we obtained a stringent con-
straint on the maximum compactness of neutron stars.
Indeed, by demanding that a causal EOS be able to sup-
port a 2M� neutron star, we obtained—within the scope
of the adopted template—a lower limit on the stellar ra-
dius of a 1.4M� neutron star of Rmin

NS = 10.7 km. Note
that our result imposes a lower limit on stellar radii.
In contrast, recent observational studies are placing up-
per limits on neutron star radii. We would like to stress
that although the EOS of pure neutron matter has been
well constrained by theoretical approaches that exploit
its close resemblance to a unitary Fermi gas, in this low-
density region neutron star matter differs significantly
from pure neutron matter because of clustering. Never-
theless, in the future we plan to use existing theoretical
and experimental constraints to guide the construction

of the low-mass part of the MR profile and to further
explore the sensitivity of our results to the assumed MR
profile. We trust that such a theoretical-observational
synergy will continue to prove beneficial in the coming
years in order to determine the dense matter equation of
state.
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