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We study the constant stress and pressure rheology of dense hard-sphere colloidal suspensions us-
ing Brownian dynamics simulation. Expressing the flow behavior in terms of the friction coefficient—
the ratio of shear to normal stress—reveals a Shear Arrest Point (SAP) from the collapse of the
rheological data in the non-Brownian limit. The flow curves agree quantitatively (when scaled) with
the experiments of Boyer et al. [Phys. Rev. Lett. 107, 188301 (2011)]. Near suspension arrest,
both the shear and the incremental normal viscosities display a universal power law divergence.
This work shows the important role of jamming on the arrest of colloidal suspensions and illustrates
the care needed when conducting and analyzing experiments and simulations near the flow-arrest
transition.
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Amorphous materials such as metallic glasses, granu-
lar matter, and colloidal suspensions exhibit a range of
flow behaviors including shear-thickening [1], particle mi-
gration [2], shear banding [3], etc. The most fundamen-
tal and universal aspect of their rheology is a flow-arrest
transition that takes place at either increased density or
reduced temperature and is summarized by various ‘jam-
ming diagrams’, pioneered by Liu & Nagel [4–6]. Exten-
sive computational and experimental investigations re-
veal that the flow-arrest transition is affected by the in-
terplay among thermal fluctuations [6–10] and particle
geometry and interactions [11–14]. Distinct behaviors
have been observed for strong and weak thermal fluctu-
ations, but the connection between the two limits is an
open question.
In this letter we present a unified perspective on the

flow-arrest transition spanning the entire range between
the thermal and athermal limits. For simplicity, our
study focuses on hard-sphere colloidal dispersions. Ex-
periments and simulations at fixed volume (fraction) have
found the suspension viscosity to diverge algebraically at
a critical volume fraction: ηs ∝ (φc−φ)−δ, where φ is the
volume fraction and δ is the exponent. With strong ther-
mal fluctuations the colloidal glass transition is observed:
φc ≈ 0.58–0.60 and δ ≈ 2.2–2.6 [7, 15–17]. In the limit
of the jamming transition where thermal fluctuations are
weak: φc ≈ 0.585–0.64 and δ ≈ 2.0 [9, 18, 19]. Moreover,
φc is sensitive to the particle size polydispersity [20], par-
ticle surface asperity [5], and even the sample preparation
protocol [21]. Traditionally, the different exponents are
interpreted as signatures of distinct physical processes—
the colloidal glass vs. the jamming transition [9]. Here
we show that when the suspension pressure, instead of
the volume, is held fixed under shear a universal expo-
nent and behavior emerges.
A challenge to dense suspension rheology is the diver-

gence of properties such as viscosity and yield stress near
φc. We overcome this in two ways. First, we impose a
constant shear stress rather than shear rate, which allows

the system to flow or not, and the yield stress—the stress
below which the material does not flow—can be identi-
fied. Second, we impose a constant confining pressure
rather than a fixed volume, which allows the system to
dilate (or compact)—to change its volume fraction—as
necessary under flow. In this way we are able to ap-
proach the critical point along trajectories at fixed shear
stress and pressure, rather than, as is traditional, along
paths of fixed shear rate and volume fraction.

It proves revealing to discuss the behavior from a per-
spective often used in the granular flow community. Al-
though both the shear and normal stresses diverge at
the critical point, their ratio does not. For viscous sus-
pensions the behavior can be described in terms of the
friction coefficient µ, a macroscopic, effective property of
the material, and the viscous flow number Iv [19],

µ = σ/Π and Iv = η0γ̇/Π, (1)

where σ is the shear stress, Π is the particle (or osmotic)
pressure, η0 is the solvent viscosity, and γ̇ is the strain
rate. Using the viscous flow number Iv—the ratio of an
internal suspension time scale η0/Π to the flow time scale
γ̇−1—Boyer et al. [19] successfully unified the rheology
of viscous non-Brownian suspensions and inertial-driven
granular materials.

For rapid granular flows both the shear and normal
stresses scale inertially (as ∼ ρa2γ̇2) and their ratio,
the friction coefficient, is independent of the strain rate,
which has led to the claim that a rate-independent fric-
tion coefficient is a signature of (dry) friction-dominated
material and flow. However, in viscous non-Brownian
suspensions (any colloidal suspension at high shear rates)
both σ and Π scale linearly with the strain rate (as
∼ η0γ̇) and the friction coefficient is independent of γ̇
even though the material behaves as a liquid.

Liquid-like colloidal dispersions are not normally dis-
cussed in terms of µ because at low shear rates (strong
thermal motion) the shear stress is proportional to γ̇, but
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Figure 1. (a): The suspension steady shear viscosity ηs/η0
(left triangles) and the long-time self-diffusivity ds∞/d0 (right
triangles), with d0 = kBT/(6πη0a), as functions of Peσ in
constant shear stress and pressure simulations at an imposed
pressure Πa3/kBT = 5. The filled (open) symbols represent
the flowing (arrested) states. Typical accumulated strain γ
(top) and volume fraction φ (bottom) at Peσ = 0.5 (b), 5 (c),
and 10 (d) as functions of dimensionless time tσ/η0 are also
presented, with the corresponding Peσ annotated in (a).

the normal stress is dominated by the equilibrium os-
motic pressure and thus µ ∼ γ̇ as γ̇ → 0. However, near
the flow-arrest point, the material has a dynamic yield
stress, and µ may approach a constant as γ̇ → 0. The
friction coefficient perspective therefore enables a natural
connection between Brownian suspensions and granular
materials.
We study the suspension rheology using Brownian dy-

namics (BD) simulations without hydrodynamic inter-
actions (HIs). In the simulations, we enforce the hard-
sphere interactions via the ‘potential free’ algorithm [22–
25], and compute φ and γ̇ from the imposed σ and Π,
which, when scaled with the thermal energy kBT , give,
respectively, the stress Péclet number Peσ = 6πa3σ/kBT
and the dimensionless pressure Π̄ = Πa3/kBT , with a the
mean particle radius. The particle dynamics follow the
overdamped Langevin equation,

ζ(ẋ− γ̇x2e1 −
1

3
ėx) = fp + fb, (2)

where x = (x1, x2, x3) is the particle position in the
1-(velocity), 2-(velocity gradient), and 3-(vorticity) di-
rections, ζ = 6πη0a is the Stokes resistance, ė is the
expansion rate, e1 is the unit vector in 1-direction, fp

is the interparticle force [25], and fb is the Brownian
force, which has a mean of zero and a variance of 2kBTζ.
We impose periodic boundary conditions in 1- and 3-

directions and the Lees-Edwards boundary condition in
2-direction. The strain (γ̇) and expansion (ė) rates are
computed from:

σ = (1 + 5

2
φ)η0γ̇ + σp

12
, (3)

Π = −(κ0 +
4

3
φη0)ė−

1

3
σp : I, (4)

where κ0 is the bulk viscosity of the compressible sol-
vent [26], and σp = −nkBT I − n〈xfp〉 is the particle
stress contribution, with n = N/V the number density.
The simulation box size L is then adjusted isotropically
as L̇ = 1

3
ėL. The novelty of our method is that, through

a compressible solvent, the constant pressure constraint
for the overdamped system is satisfied without introduc-
ing permeable boundaries.
For each (Peσ, Π̄) pair we perform at least three in-

dependent simulations, each contains N = 200 particles
with 10% particle size polydispersity [8]. The simulation
lasts at least 104 dimensionless time units with step size
10−4, where the time is scaled with 6πη0a

3/kBT when
Peσ < 1 and with η0/σ when Peσ ≥ 1. In Supplemen-
tal Material [27] we describe the computation of fp, and
show that the selected parameters adequately capture the
physics of flow-arrest transitions.
Typical rheological responses from constant stress and

pressure simulations at an imposed pressure Π̄ = 5 are
shown in Fig. 1. The Peσ dependence of the shear
viscosity ηs = σ/γ̇ and the long-time self-diffusivity
(LTSD) ds∞, measured from the slope of the mean-
square displacement in the vorticity direction, ds∞ =
limt→∞

1

2
d〈(∆x3)

2〉/dt, are presented in Fig. 1a. The
suspension exhibits a flow-arrest transition at Peσ ≈ 5,
with the flowing data shown as filled symbols and the
arrested data as open symbols. When Peσ & 5, the shear
viscosity increases sharply with decreasing Peσ, reaching
ηs/η0 ≈ 2 × 104 at Peσ ≈ 5. Accompanying the growth
in ηs is an abrupt reduction in ds∞. At lower Peσ, the
shear viscosity remains high and the LTSD low. Fig. 1b–
1d show behaviors of the accumulated strain γ =

∫ t

0
γ̇dt

and the volume fraction φ at different Peσ. The accumu-
lated strain grows linearly with time in the flowing state,
but changes little in the arrested state. At Peσ = 5
in Fig. 1c, γ exhibits instability and switches between
the flowing and arrested states. Correspondingly, φ fluc-
tuates around a mean value for both the flowing and
arrested suspensions, but becomes unstable at the flow-
arrest point. We found that the suspensions is arrested
when ηs/η0 > 2× 104 over a wide range of imposed pres-
sures. Consequently, this is adopted as a criterion for the
flow-arrest transition in this work.
Fig. 2 presents the overall steady shear rheology at con-

stant stress and pressure near the flow-arrest transition.
Fig. 2a shows the friction coefficient as a function of the
viscous number, and Fig. 2b shows the corresponding vol-
ume fraction. The symbols of the same color are at the
same confining pressure (shown in the figure legend) and
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Figure 2. (Color online) The steady shear rheology of hard-
sphere colloidal suspensions with constant shear stress and
pressure, (a): µ = σ/Π as a function of Iv = η0γ̇/Π and
(b): µ as a function of φ. Simulations at the same imposed
pressure Πa3/kBT are shown in the same symbols. For sus-
pensions exhibiting flow-arrest transitions, the filled (open)
symbols represent the flowing (arrested) states. The raw and
the scaled data of Boyer et al. [19] are shown in diamonds
and triangles, respectively. In (b), the dashed lines outline
the boundary of the flowing region, and the solid lines are
contours of the shear viscosity ηs/η0. The Shear Arrest Point

(φSAP, µSAP) is shown as a star.

trace out ‘isobars’. Full symbols are flowing liquid-like
systems, while unfilled symbols denote arrested states.

Starting with solid ×’s at low confining pressures, e.g.,
at Π̄ = 0.95 in Fig. 2a, µ grows linearly with Iv at low
and high Iv with different slopes; the suspension does
not arrest. The ratio of µ and Iv is the shear viscosity,
ηs/η0 = µ/Iv. At high Iv, the suspension viscosity ηs
asymtotes to the solvent viscosity η0. With increasing
Π̄, the µ-Iv curve flattens as Iv decreases, but eventually
turns down such that µ ∼ γ̇ as γ̇ → 0. The suspen-
sion flows as a liquid with an increasing zero shear-rate
viscosity corresponding to the larger φ seen in Fig. 2b.

When the confining pressure Π̄ ≥ 3.5, the suspension

arrests and flows only if µ exceeds a limiting value µm(Π̄),
and the minimum shear rate (Iv) increases. The imposed
stress corresponding to µm is the dynamic yield stress at
the imposed pressure. Moreover, µm increases with Π̄
and, as Π̄ → ∞, µm asymptotes to a constant value of
0.16. At high Π̄ (and high Iv for low Π̄) all data collapse
onto a single curve corresponding to the limiting behavior
of non-Brownian viscous suspensions.
Fig. 2b shows the corresponding µ-φ curves. At low

confining pressures (the ×’s) the volume fraction in-
creases as the shear stress (µ) decreases. When arrested,
Π̄ ≥ 3.5 (open symbols), dilation always precedes flow as
the shear stress is increased and the maximum flowable
volume fraction φm is always lower than the zero-shear
value. As a point of reference, the zero-shear volume frac-
tion at Π̄ = 3.5 is φ = 0.60 for our system. As Π̄ → ∞,
φm asymptotes to a constant value and the non-Brownian
limit emerges as the µ-φ curves collapse. The flowing re-
gion in Fig. 2b is bounded from below by the arrested
region and from above by the non-Brownian behavior.
The rightmost point of the flowing region, highlighted

as a star in Fig. 2b, corresponds to the flow-arrest tran-
sition in the viscous non-Brownian limit. This point is
referred to as the Shear Arrest Point (SAP):

(φSAP, µSAP) = lim
Π̄→∞

(φm, µm) ≈ (0.635, 0.16) , (5)

which represents a limit beyond which the suspension is
unable to flow regardless of the imposed pressure and
shear stress. The SAP is uniquely determined from the
constant stress and pressure rheology protocol and there-
fore may differ from other ‘jamming’ points [5, 6]. In
fact, φSAP is lower than the maximum random jammed
(MRJ) density of the corresponding polydisperse packing
φMRJ ≈ 0.645.
Also presented in Fig. 2b are the shear viscosity con-

tours up to ηs/η0 = 104. Horizontal traversal near
µ = 0 recovers the equilibrium suspension behavior
near the glass transition. The viscosity diverges at
φg ≈ 0.6, which is also found experimentally in simi-
lar systems [16, 17, 28]. Vertical crossing corresponds
to the constant volume rheology and the viscosity ex-
hibits shear-thinning. Near the SAP, the range of µ in
the flowing region reduces drastically for constant vol-
ume rheology. On the other hand, constant stress and
pressure rheology allows the suspension to dilate and to
find the SAP dynamically, a key merit of our approach.
In the flowing region near the flow-arrest transition

both the shear viscosity ηs and the incremental normal
viscosity ηn diverge as shown in Fig. 3. The incremental
normal viscosity ηn characterizes the flow contribution to
the osmotic pressure,

ηn = (Π−Πeq)/γ̇, (6)

where Πeq is the zero-shear equilibrium osmotic pressure
at the same volume fraction. Both ηs and ηn diverge al-
gebraically when approaching the flow-arrest transition:
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Figure 3. (Color online) Universal viscosity divergences (a):
the shear viscosity ηs/η0 and (b): the incremental normal
viscosity ηn/η0 as functions of (φm − φ), the volume fraction
difference from arrest, for flowing suspensions with Π̄ ≥ 3.5.
The inset of (a) shows φm as a function of Π̄. The legends
are identical to those in Fig. 2.

(ηs , ηn) ∼ (φm − φ)−2; the exponent 2 is independent
of the imposed pressure and thus valid for both strong
and weak thermal fluctuations. The same viscosity di-
vergence exponents were found in experiments [19] and
simulations [29] of non-Brownian systems, suggesting the
physics of jamming is the most important and universal
aspect of the flow-arrest transition. Thermal fluctuations
only affect the arrest volume fraction φm, as shown in the
inset of Fig. 3a.

Note that the divergence of the shear viscosity with
an exponent of 2 is not inconsistent with exponent 2.2–
2.6 reported for the colloidal glass transition. For the
glass transition, one approaches the arrested region in
Fig. 2b horizontally by varying the volume fraction at
low µ, whereas the divergences observed here are for ap-
proaching arrest at fixed pressure. Both where the vis-
cosity starts to diverge, φm, and how steep is the rise, the
exponent α, depend on how the ‘mountain’ (the viscosity
contours) is approached.

The data collapse in Fig. 3 can be explained by the in-
ternal structural relaxations in colloidal dispersions. The
inherent relaxation from thermal fluctuations is charac-
terized by ds,0∞ , and for glassy materials φ > φg, d

s,0
∞ → 0.

Comparing the shear to the inherent Brownian forces de-
fines a zero-shear Péclet number γ̇a2/ds,0∞ and shows that,
in the glassy or arrested state, any finite shear rate gives
a large Péclet number. The system is driven far from
equilibrium and therefore shows universal behaviors. In-

deed, this is seen in ηn: linear response would dictate
that ηn ∝ γ̇ as γ̇ → 0 [30], rather than be independent of
γ̇ as seen in Fig. 3b. There is no linear response regime
near a flow-arrest point. This may explain why the in-
herently non-equilibrium isobaric flow-arrest transition
of colloidal dispersions has features in common with the
athermal granular jamming transitions [31–33].
Finally, we compare our simulations to the experi-

ments of Boyer et al. [19], whose results are shown as
diamonds in Fig. 2. The experimental data qualitatively
agree with the simulation results in the non-Brownian
limit (Π̄ → ∞); however, their flow-arrest critical point
(φc, µc) = (0.585, 0.32) is quite different. We can achieve
quantitative agreement by scaling the experimental data
from (φ, µ) to (φ′, µ′) as

µ′

µ
=

φSAP − φ′

φc − φ
=

µSAP

µc

, (7)

which are shown as triangles in Fig. 2 and match the sim-
ulation results. The scaling of Eq. (7) implies that the
fundamental physics behind the viscous non-Brownian
arrest does not change with the HIs or the possible fric-
tional contact forces in the experiments. Our simulations
clearly capture the physics of the flow-arrest transition.
That µc > µSAP can be understood from the lack

of HIs in the simulations. Hydrodynamics give an ad-
ditional contribution to the shear stress via the high-
frequency dynamic viscosity, which increases σ and there-
fore µ. However, they do not explain the difference in
the computational φSAP and the experimental φc seen
in Fig. 2b. One interpretation is that frictional contact
forces in the experiments reduce the arrest volume frac-
tion [5, 12]. Yet, there is a simpler explanation. In the
experiments near suspension arrest, the minimum sus-
pension height in the shear cell (8.8 mm) is not much
larger than the particle diameter (1.1 mm) [19, 34]. There
is a region of order the particle size a adjacent to the ap-
paratus walls that is inaccessible to the particles. Using
the accessible volume rather than the total volume can
increase the volume fraction by as much as 11% and ac-
count for the difference between φSAP and φc. Clearly,
extreme care is needed when studying dense suspensions
as seemingly unimportant details can drastically affect
the results.
This work demonstrates that constant stress and pres-

sure rheology is an effective approach to study the flow-
arrest transitions of dense amorphous materials and pro-
vides a unique perspective to distinguish the most funda-
mental physics in this transition. We found the viscous
non-Brownian Shear Arrest Point (SAP) of hard-sphere
colloidal suspensions from the collapse of the flow curves.
The results strongly suggest that the jamming and glass
transitions are different facets of the same phenomenon,
offering the hope for a unified understanding.
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