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The observed single-handedness of biological amino acids and sugars has long been attributed
to autocatalysis. However, the stability of homochiral states in deterministic autocatalytic systems
relies on cross inhibition of the two chiral states, an unlikely scenario for early life self-replicators.
Here, we present a theory for a stochastic individual-level model of autocatalysis due to early life self-
replicators. Without chiral inhibition, the racemic state is the global attractor of the deterministic
dynamics, but intrinsic multiplicative noise stabilizes the homochiral states, in both well-mixed and
spatially-extended systems. We conclude that autocatalysis is a viable mechanism for homochirality,
without imposing additional nonlinearities such as chiral inhibition.

PACS numbers: 87.23.Kg, 87.18.Tt, 05.40.-a

One of the very few universal features of biology is
homochirality: every naturally occurring amino acid is
left-handed (l-chiral) while every sugar is right-handed
(d-chiral) [1, 2]. Although such unexpected broken sym-
metries are well-known in physics, for example in the
weak interaction, complete biological homochirality still
defies explanation. In 1953, Charles Frank suggested
that homochirality could be a consequence of chemical
autocatalysis [3], frequently presumed to be the mech-
anism associated with the emergence of early life self-
replicators. Frank introduced a model in which the d
and l enantiomers of a chiral molecule are autocatalyt-
ically produced from an achiral molecule A in reactions
A+d→ 2d and A+ l→ 2l, and are consumed in a chi-
ral inhibition reaction, d + l→ 2A [4]. The state of this
system can be described by the chiral order parameter ω
defined as ω ≡ (d− l)/(d+ l), where d and l are the con-
centrations of d and l. The order parameter ω is zero
at the racemic state, and ±1 at the homochiral states.
Frank’s model has three deterministic fixed points of the
dynamics; the racemic state is an unstable fixed point,
and the two homochiral states are stable fixed points.
Starting from almost everywhere in the d-l plane, the
system converges to one of the homochiral fixed points
(Fig. 1a).

In the context of biological homochirality, extensions of
Frank’s idea have essentially taken two directions. On the
one hand, the discovery of a synthetic chemical system of
amino alcohols that amplifies an initial excess of one of
the chiral states [5] has motivated several autocatalysis-
based models (see [6] and references therein). On the
other hand, ribozyme-driven catalyst experiments [7],
have inspired theories based on polymerization and chi-
ral inhibition that minimize [8–10] or do not include at
all [11, 12] autocatalysis. In contrast, a recent experimen-
tal realization of RNA replication using a novel ribozyme
shows such efficient autocatalytic behavior that chiral in-
hibition does not arise [13]. Further extensions account-

ing for both intrinsic noise [6, 14] and diffusion [15–18]
build further upon Frank’s work.

Regardless of the specific model details, all these
models share the three-fixed-points paradigm of Frank’s
model, namely that the time evolution of the chiral order
parameter ω is given by a deterministic equation of the
form [6]

dω

dt
= f(t)ω

(
1− ω2

)
, (1)

where the function f(t) is model-dependent. However,
the homochiral states arise from a nonlinearity which is
not a property of simple autocatalysis, but, for instance
in the original Frank’s model, is due to chiral inhibition
(see Fig. 1b). The sole exception to the three-fixed-points
model in a variation of Frank’s model is the work of Lente
[19], where purely stochastic chiral symmetry breaking
occurs, although chiral symmetry breaking is only par-
tial, with ω 6= 0 but |ω| < 1.

The purpose of this Letter is to show that effi-
cient early-life self-replicators can exhibit universal
homochirality, through a stochastic treatment of Frank’s
model without requiring nonlinearities such as chiral
inhibition. In our stochastic treatment, the homochi-
ral states arise not as fixed points of deterministic
dynamics, but instead are states where the effects of
chemical number fluctuations (i.e. the multiplicative
noise [20]) are minimized. The mathematical mechanism
proposed here [21–24] is intrinsically different from that
of the class of models summarized by Eq. (1). In the
following, we propose a model which we analytically
solve for the spatially uniform case and the case of
two well-mixed patches coupled by diffusion. We then
show, using numerical simulations, that the results
persist in a one-dimensional spatially-extended system.
We conclude that autocatalysis alone can in principle
account for universal homochirality in biological systems.
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FIG. 1: (Color online) (a) Phase portrait of Frank’s model: the racemic state is an unstable fixed point (red dot),
while the homochiral states are stable fixed points (green dots). (b) If chiral inhibition is replaced by linear decay
reaction, the ratio of d and l molecules stays constant. (c) Adding even the slightest amount of non-autocatalytic
production of d and l molecules makes the racemic state (green dot) the global attractor of the dynamics.

Stochastic model for well-mixed system:- Motivated in
part by the experimental demonstration of autocataly-
sis without chiral inhibition [13], we propose the reaction
scheme below, which is equivalent to a modification of
Lente’s reaction scheme [19] through the additional pro-
cess representing the recycling of enantiomers:

A+ d
ka−−→ 2d, A+ l

ka−−→ 2l,

A
kn−−⇀↽−−
kd

d, A
kn−−⇀↽−−
kd

l. (2)

Compared to Frank’s model, the chiral inhibition is re-
placed by linear decay reactions which model both recy-
cling and non-autocatalytic production. The rate con-
stants are denoted by k, with the subscript serving to
identify the particular reaction. The only deterministic
fixed point of this model is the racemic state (Fig. 1c).
This model can be interpreted as a model of the evolution
of early life where primitive chiral self-replicators can be
produced randomly through non-autocatalytic processes
at very low rates; the self-replication is modeled by au-
tocatalysis while the decay reaction is a model for the
death process.

We now approximate reaction scheme (2) by means of
a stochastic differential equation for the time evolution
of the chiral order parameter, ω, which shows that in the
regime where autocatalysis is the dominant reaction, the
functional form of the multiplicative intrinsic noise from
autocatalytic reactions stabilizes the homochiral states.
We consider a well-mixed system of volume V and total
number of molecules N . As shown in the Supplementary
Material (SM)[25], for N � 1, we obtain the following
equation for ω, defined in the Itō sense [20]:

dω

dt
= −2knkdV

Nka
ω +

√
2kd
N

(1− ω2)η(t), (3)

where η(t) is normalized Gaussian white noise [20].

The time-dependent distribution of Equation (3) can
be computed exactly [24, 26]. The stationary distribu-
tion [20],

Ps(ω) = N
(
1− ω2

)α−1
, with α =

V kn
ka

, (4)

depends on a single parameter, α, where the normaliza-
tion constant N is given by

N =

(∫ +1

−1

(
1− ω2

)α−1
dω

)−1
=

Γ
(
α+ 1

2

)
√
π Γ(α)

. (5)

Equation (4) is compared in Fig. 2 against Gillespie
simulations [27] of scheme (2). For α = αc = 1, ω
is uniformly distributed. For α � αc, where the non-
autocatalytic production is the dominant production re-
action, Ps(ω) is peaked around the racemic state, ω = 0.
For α � αc, where autocatalysis is dominant, Ps(ω) is
sharply peaked around the homochiral states, ω = ±1.
The simulations were performed for N = 1000, where the
analytic theory is expected to be accurate; for smaller
values of N , the theory is qualitatively correct, but very
small quantitative deviations are observable compared to
the simulations. For example, for N ∼ 100, αc ∼ 1.005.

The deterministic part of Eq. (3) has one fixed point
at the racemic state, consistently with the phase por-
trait in Fig. 1c. The multiplicative noise in Eq. (3) van-
ishes at homochiral states, and admits its maximum at
the racemic state. For α � αc, where autocatalysis is
dominant, the amplitude of the noise term in Eq. (3) is
much larger than the amplitude of the corresponding de-
terministic term. In this regime, the system ends up at
homochiral states where the noise vanishes.

To understand this result physically, note that the
source of the multiplicative noise is the intrinsic stochas-
ticity of the autocatalytic reactions. While, on average,
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FIG. 2: (Color online) Comparison between the
stationary distribution, Eq. (4), (dashed lines) and
Gillespie simulations of reactions (2) (markers), for
different values of α. Simulation parameters: N = 103,
ka = kn = kd = 1.

the two autocatalytic reactions do not change the vari-
able ω, each time one of the reactions takes place, the
value of ω changes by a very small discrete amount. As a
result, over time the value of ω drifts away from its initial
value. Since the amplitude of the noise term is maximum
at racemic state and zero at homochiral states, this drift
stops at one of the homochiral states. The absence of
the noise from autocatalysis at homochiral states can be
understood by recognizing that at homochiral states, the
molecules with only one of two chiral states d and l are
present, hence only the autocatalytic reaction associated
with that chiral state has a non-zero rate. This reaction
produces molecules of the same chirality, keeping the sys-
tem at the same homochiral state without affecting the
value of ω, and therefore, the variable ω does not expe-
rience a drift away from the homochiral states due the
autocatalytic reactions.

Since the stationary distribution of ω in Eq. (4) is only
dependent on α, the decay reaction rate, kd has no ef-
fect on the steady state distribution of the system. The
only role of this reaction is to prevent the A molecules
from being completely consumed, thus providing a well-
defined non-equilibrium steady state independent of the
initial conditions. The parameter α is proportional to
the ratio of the non-autocatalytic production rate, kn, to
the self-replication rate, ka. In the evolution of early life,
when self-replication was a primitive function, ka would
be small and the value of α would therefore be large; but
as self-replication became more efficient, the value of ka
would increase and so α would decrease. Therefore, in
our model, we expect that life started in a racemic state,
and it transitioned to complete homochirality through
the mechanism explained above, after self-replication be-
came efficient (i.e. when α� αc).

It is important to note that all of the previous

mechanisms suggested for homochirality rely on assump-
tions that cannot be easily confirmed to hold during
the emergence of life. However, even if all of such
mechanisms fail during the origin of life, our mechanism
guarantees the emergence of homochirality, since it only
relies on self-replication and death, two processes that
are inseparable from any living system.

Stochastic model with spatial extension:- We now turn
to the study of reaction scheme (2) generalized to the
spatially-extended case [28]. We discretize space into
a collection of M patches of volume V , indexed by i.
The geometry of the space is defined by 〈i〉 — the set
of patches that are nearest-neighbor to patch i (e.g., for
a linear chain, 〈i〉 = {i − 1, i + 1}). We indicate the
molecules of species A in patch i by Ai and similarly for
the other species. Each patch is well-mixed and reac-
tions (2) occur within, while molecules can diffuse be-
tween neighboring patches with diffusion rate δ. In sum-
mary, the following set of reactions defines the spatial
model:

Ai
kn−−⇀↽−−
kd

di, Ai
kn−−⇀↽−−
kd

li, i = 1, . . . ,M

Ai + di
ka−−→ 2di, Ai + li

ka−−→ 2li

di
δ−⇀↽− dj , li

δ−⇀↽− lj , j ∈ 〈i〉.

(6)

We now derive the following set of coupled stochastic
differential equation for the time evolution of the chiral
order parameter ωi, of each patch i (see SM)

dωi
dt

=− 2knkdV

Nka
ωi + δ

∑
j∈〈i〉

(ωj − ωi)

+

√
2kd
N

(1− ω2
i )ηi(t) +

√
δ

N
ξi(~ω, t),

(7)

where now N represents the average number of molecules
per patch, ηi’s are independent normalized Gaussian
white noises, ξi’s are zero mean Gaussian noise with cor-
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FIG. 3: (Color online) Parameter αpatch
c in the

two-patch system as a function of the diffusion rate δ.
Gillespie simulations (markers) are compared against
Eq. (11) (solid blue line) and Eq. (13) (dashed red line).
Simulation parameters as in Fig. 2.
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FIG. 4: (Color online) Gillespie simulation of scheme (6) for a one-dimensional system of M = 100 patches, starting
from racemic state and ending with all the patches in the same homochiral state ω = −1. Simulation parameters:
N = 1000, ka = kd = 1, δ = 10−3, and kn = 0.

relator

〈ξi(t)ξj(t′)〉 =

2
∑
k∈〈i〉

(1− ωiωk) δi,j

+
(
ω2
i + ω2

j − 2
)
χ〈i〉(j)

 δ(t− t′),

(8)

and χ〈i〉(j) is equal to one if j ∈ 〈i〉 and zero otherwise.
In order to see how the coupling of well-mixed patches

affects their approach to homochirality, it is instructive
to consider the simplest case of two adjacent patches
(M = 2). In the two-patch model, various scenarios
can happen: the system may not exhibit homochirality
(ω1 ∼ ω2 ∼ 0); each patch can separately reach homochi-
rality (ω1 = ±1 and ω2 = ±1); the system exbihits global
homochirality (ω1 = ω2 = ±1). We first analyze the con-
dition for each patch reaching homochirality using per-
turbation theory, in the case of slow diffusion. The sta-
tionary probability density function of the chiral order
parameter of a single patch, Qs(ω) is defined by

Qs(ω) =

∫ +1

−1
Qs(ω, ω2)dω2 =

∫ +1

−1
Qs(ω1, ω)dω1, (9)

where Qs(ω1, ω2) is the joint probability distribution of
ω1 and ω2 at steady state from Eq. (7). If δ ∼ kd/N or
smaller, then (see SM) the stationary distribution reads

Qs(ω) = Z(1− ω2)
α+ δN

2kd
−1
, (10)

where Z is a normalization constant. This result shows
that the critical α in a single patch, up to the first order
correction in δ, is given by

αpatch
c ≈ 1− δ N

2kd
, for δ ≈ 0. (11)

We can now turn to the case of high diffusion. Recall
that the patches are defined as the maximum volume

around a point in space in which the system can be con-
sidered well-mixed. This can be interpreted as the maxi-
mum volume in which diffusion dominates over the other
terms acting on the variable of interest (in this case ω).
From Eq. (7), this condition is fulfilled for δ ∼ 2kdα/N .
In the vicinity of the transition α is in order of one, there-
fore the condition becomes δ ∼ kd/N . For δ � kd/N , the
whole system can be considered well-mixed, and we can
find the critical value of α for each patch, starting from
αc = 1, from the well-mixed results, and using as volume
the volume the whole system, i.e., MV . This indicates
that in a single patch

αpatch
c ≈ 1

M
, for δ � 0. (12)

A simple formula that interpolates between these ex-
treme limits, asymptotic to 1/M (with M = 2) for large
δ and to Eq. (11) for small δ, is

αpatch
c =

δ + 2δ∗

2δ + 2δ∗
, δ∗ =

kd
N
. (13)

Figure 3 shows agreement between αpatch
c measured

from Gillespie simulations of the two-patch system, and
the Eq. (13). At the parameter regime below the αc curve
in Fig. 3, individual patches are homochiral. Also, we
find that the correlation between the homochiral states
of the two patches increases with diffusion rate δ and
become completely correlated when δ ∼ kd/N or more.
In this regime the system reaches global homochirality.

This latter result suggests that in the spatially-
extended model, when autocatalysis is the dominant re-
action (i.e. α is small enough) and when the diffusion rate
is in the order of kd/N or larger, all patches converge to
the same homochiral state. Figure 4 shows the dynamics
of a Gillespie simulation of a one-dimensional chain of
100 patches, initializes at the racemic state, in the pure
autocatalytic limit (kn → 0). Very quickly, small islands
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of different homochirality (blue and red) are formed. Is-
lands of opposite chirality competes against each other,
until the system reaches global homochirality. Note that
for δ ∼ kd/N we can treat the diffusion process deter-
ministically by ignoring the last term in Eq. (7). In this
regime, Eq. (7) is the same as the equation describing
one-dimensional voter model, implying that the transi-
tion to homochirality is in the universality class of com-
pact directed percolation [29].

In conclusion, a racemic population of self-replicating
chiral molecules far from equilibrium, even in the ab-
sence of other nonlinearities that have previously been
invoked, such as chiral inhibition, transitions to com-
plete homochirality when the efficiency of self-replication
exceeds a certain threshold. This transition occurs due
to the drift of the chiral order parameter under the in-
fluence of the intrinsic stochasticity of the autocatalytic
reactions. The functional form of the multiplicative in-
trinsic noise from autocatalysis directs this drift toward
one of the homochiral states. Unlike some other mecha-
nisms in the literature, this process does not require an
initial enantiomeric excess. In our model, the homochiral
states are not deterministic dynamical fixed points, but
are instead stabilized by intrinsic noise. Moreover, in the
spatial extension of our model, we have shown that dif-
fusively coupled autocatalytic systems synchronize their
final homochiral states, allowing a system solely driven
by autocatalysis to reach global homochirality. We con-
clude that autocatalysis alone is a viable mechanism for
homochirality, without the necessity of imposing chiral
inhibition or other nonlinearities.
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