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We show that by modifying the setup of the recent experiment that creates a ”Dirac string”, one can engineer
a quasi 2D spinor Bose-Einstein condensate on a cylindrical surface, with a synthetic magnetic field normal
to the surface. Due to the muti-connectivity of the surface, there are two types of vortices (called A and B)
with the same vorticity. This is very different from the planar case, which only has one kind of vortex for
fixed circulation. As the strength of the synthetic gauge field increases, the ground states will form a necklace
of alternating AB vortices surrounding the lateral midpoint of the cylinder, and will split into two A and B
necklaces at higher synthetic gauge fields. The fact that even the basic vortex structure of a BEC is altered in a
cylindrical surface implies that richer phenomena are in store for quantum gases in other curved surfaces.

In the study of quantum matter, one usually deals with Eu-
clidean space. Spaces with non-zero curvatures are seldom
encountered. However, recent studies show that many im-
portant properties of many-body systems can be revealed by
changing the geometry or topology of the background mani-
fold. For instance, the ground state degeneracy of a quantum
Hall system is shifted by an amount proportional to the genus
of the manifold[1]. A change of the spatial geometry of the
system can also lead to a dissipation free “Hall viscosity” re-
sponse in two dimensional systems[2]. Furthermore, it was
found in graphene that curvature effects can mimic those of
gauge fields[3]. The fact that manifolds with non-Euclidean
geometry can help uncover new features of quantum matter
makes it desirable to create manifolds of controllable shape,
and to develop capability to add in synthetic gauge fields.

The purpose of this paper is to discuss how to create quan-
tum gases on curved surfaces with synthetic gauge fields, as
well as their properties. As a first step, we consider a spinor
Bose-Einstein condensate (BEC) in the form of a cylindri-
cal surface (produced by an annulus trap). Bose condensa-
tion will magnify quantum phenomena on the macroscopic
scale, while large spins will lead to stronger synthetic gauge
fields through Berry phase effects. Our study is an extension
of the on-going effort of generating synthetic gauge fields in
quantum gases (using rotating traps[4–10], Raman transitions
or shaking lattices[11–17]) to explore the effect of geometry
and topology of the underlying manifold on BECs in such
settings.[18]

A cylindrical surface has a non-trivial topology (i.e. a hole)
and an extrinsic curvature[19]. As we shall see, the non-trivial
topology of this surface leads to two types of vortices (denoted
as A and B) with the same circulation, in contrast to the sin-
gle type of vortex for given circulation in planar geometry.
This is because there are only two conformal maps that takes
a plane into a cylinder that satisfy the topological constraint.
We further show that in the presence of a synthetic magnetic
field, the confining potential of the annulus will give rise to a
“necklace” of vortices – a row of alternating A and B vortices
surrounding the center of the cylinder at z = 0, rather than the
usual hexagonal vortex array in a planar geometry. Such vor-
tex patterns will shown up in time of flight experiments as a

density distribution with 2n-fold rotational symmetry around
the axis of the cylinder, (n being the number of A-B vortex
pairs in the ground state), which can be detected easily. The
fact that structures as fundamental as vortices can come in
different varieties on a cylindrical surface suggests that many
new phenomena are in store for more complex curved spaces.

FIG. 1. The blue and red dotted lines represent the attractive and the
repulsive potential due to the red-detuned and blue-detuned lasers.
The green curve is the combined potential, with a minimum at R. For
sufficiently large R and for weak harmonic confinement along z, the
quantum gas will form a quasi-2D cylindrical layer with thickness
σ � R, shown in green[20].

I. Realization of a BEC on a cylindrical surface in Landau
gauge: To create a quasi 2D BEC in the form of a cylindrical
surface, we first create an annulus trap of narrow width by
piercing through a trap (produced by a red-detuned laser) with
a repulsive potential (produced by a blue-detuned laser), as
shown in Fig.1. This will create a confining well in the radial
direction with a minimum at radius R. A harmonic potential
V(z) = Mω2

z z2/2 is applied along z. If ωz is much weaker
than the trap frequency in the radial direction, then a quantum
gas in this trap will form a quasi-2D cylindrical surface with
radius R, thickness σ, and finite height. (See Fig. 1 and [20]).

Next, we insert a quadrupolar magnetic field B into the cen-
ter of the cylinder, (see Fig.1), B(x) = B0(xx̂ + yŷ − 2zẑ)

= B0r(sin θ cosϕx̂ + sin θ sinϕŷ − 2 cos θẑ). Such a field



2

configuration was used recently in the experiment by Hall’s
group[21]. Our configuration is a modification of their setup
by piercing through the harmonic potential with a blue-
detuned laser. For sufficiently large Bo, the low energy space
is made up of bosons with spin pointing to the direction of
the local field B(x). Denoting the direction of the spin as
l̂ = cos βẑ + sin β(cosαx̂ + sinαŷ), we have

α = ϕ, cos β = −
2z

√
R2 + 4z2

. (1)

The condensate wave function of bosons with spin S is then
ψa(x) = ζa(x)φ(x), where a is the spin index, ζa(x) is a
normalized vector aligned with the local magnetic field, i.e.
B̂(x) · Sabζb(x) = S ζa(x).

The energy functional reads (with spin indices suppressed)

E[ψ] =

∫
d2x

[
~2

2M
|∇ψ|2 − (µ − V(z)) |ψ|2 +

g
2
|ψ|4

]
. (2)

Here, we have ∇ = ẑ∂z + R−1ϕ̂∂ϕ. With ζa(x) frozen by B(x),
(2) reduces to a functional of φ(x). The kinetic part becomes

|∇ψ|2 =

∣∣∣∣∣∣
(
∇

i
+
ζ†∇ζ

i

)
φ

∣∣∣∣∣∣2 +
[
|∇ζ |2 + (ζ†∇ζ)2

]
|φ|2. (3)

Both |∇ζ |2 and (ζ†∇ζ)2 serve as additional harmonic poten-
tial around z = 0[22]. We shall then denote the total har-
monic trap along z as Vz = 1

2 Mω̃2
z z2. Thus, the system rep-

resents scalar charged bosons φ(x) moving in synthetic mag-
netic field, with the gauge potential and field strength Asyn =

iζ†∇ζ = S (∇α) cos β ≈ − ϕ̂R
2zS
R , Bsyn = ∇×Asyn ≈ (2S/R2)r̂

near z = 0. The strength of the synthetic field is proportional
to 2S , so a vortex ground state is expected for condensates
with sufficiently large spin. To simplify notations, we mea-
sure length in units of R, so that z/R → z, and z is now
dimensionless. We further introduce the dimensionless vari-
ables α̃ ≡ Mω̄zR2/~, µ̃ ≡ µ/(~2/2MR2), g̃ ≡ g/(~2/2MR2),
then the energy functional becomes E[ψ] = ~2

2MR2

∫
d2x E,

E = |∂zφ|
2 +

∣∣∣∣(−i∂ϕ + 2S z
)
φ
∣∣∣∣2 − (

µ̃ − α̃2z2
)
|φ|2 +

g̃
2
|φ|4. (4)

The physics in the lowest Landau level (LLL)[23] can pro-
vide useful physical intuitions. The non-interacting part of the
Hamiltonian in Eq.(4) is

h = −∂2
z + (−i∂ϕ + 2S z)2 + α̃2z2. (5)

It describes a charged particle in a magnetic field in the Lan-
dau gauge in the presence of a harmonic potential. The
eigenstates in the LLL are fm(ϕ, z) = e−imϕe−ν(z−zm)2/2, zm =
2S
ν

m, ν ≡
√

4S 2 + α̃2, with energy εm = ν + α̃2

ν2 m2. The
state fm is a ring at zm with m units of circulation around the
azimuthal direction. It is useful to rewrite fm as

fm(ϕ, z) = Cmwme−νz
2/2, w = e−iu, u = ϕ + i

2S
ν

z (6)

where Cm = e−2S 2m2/ν3
. Here, u is the complex number that

represents the point (ϕ, z), and w is the conformal map that
takes the cylinder (ϕ, z) into a 2D plane (wx,wy). Eq.(6) shows
fm is a simple power of w apart from the Gaussian in z.

For non-interacting systems, bosons will condense in the
m = 0 state. However, as in the planar case, an increasing
repulsive interaction will change the condensate at m = 0
to other linear combination of m states so as to reduce the
repulsion energy. We shall not discuss the vortex transi-
tion in the LLL in this paper. Instead, we point out that
a linear combination of the form BMφM + BMφ−M amounts
to a linear array of 2π-vortices, since BMwM + B−Mw−M =

B−Mw−M ∏2M
`=1(w − (− B−M

BM
)1/2Meπ`/M). It is easy to see that a

vortex in the w space is also a vortex in the u space.
II. Isolated vortex on a cylindrical surface: To bring the dis-

cussion closer to current experiments, we consider a gas with
∼ 105 bosons, which typically occupy many Landau levels. If
φ(ϕ, z) has a vortex at u j = ϕ j + i 2S

ν
z j with unit circulation,

then as u → u j, it must be of the form φ ∝ (u − u j). On the
other hand, φ(ϕ, z) must be a linear combination of the basis
functions {eimϕ,m ∈ Z} due to the periodicity along ϕ. This
implies the phase winding of φ(ϕ, z) is of the form

φ(ϕ, z) ∝ W±
j , W±j =

(
e±iu − e±iu j

)
; u = ϕ + i

2S
ν

z. (7)

Their corresponding superfluid velocity are

vs = ∇Θ±j , Θ±j = arg(W±j ) (8)

Note that both W+
j and W−

j have the same +2π circulation,
since both reduce to u − u j as u→ u j. Their velocity profiles,
however, are very different. The gradients

∂ϕΘ
±
j = ∓

e±
2S
ν (z−z j) − cos(ϕ − ϕ j)

2
[
cosh 2S

ν
(z − z j) − cos(ϕ − ϕ j)

] , (9)

∂zΘ
±
j =

2S
ν

sin(ϕ − ϕ j)

2
[
cosh 2S

ν
(z − z j) − cos(ϕ − ϕ j)

] . (10)

show that ∇Θ+
j and ∇Θ−j are related by a π rotation about vor-

tex core. Far from the vortex core, they approaches a constant
on one side and vanishes on the other,

∇Θ+
j →

{
−1 · ϕ̂, z � z j

0, z � z j
, ∇Θ−j →

{
0, z � z j

1 · ϕ̂, z � z j .
(11)

as shown in Fig.2 (a) and (b). Because of this feature, we refer
to Θ+

j and Θ−j as the A- and B-vortex as their velocities are
mostly non-vanishing “above” and “below” the vortex core
respectively. It is easy to see that vortices with `-circulation
will also come in two different types, (e±iu − e±iu j )`.

The presence of two types of vortices of the same circula-
tion marks a key difference between the cylindrical and the
planar BEC. In the latter case, there is one typical vortex with
+2π circulation, of the form x + iy. This difference can be
traced back to the conformal map w = ecu that takes a 2D
plane (wx,wy) into a cylinder (ϕ, z), and c is a complex number
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that describes the change in scale and orientation of the cylin-
drical strip with respect to (wx,wy)-plane. However, since the
wave function of the BEC is made up of the basis functions
{eimϕ}, c can only be ±i for vortices of unit circulation, reduc-
ing the infinite number of mapping down to 2. The periodicity
of the basis function, which exists in all Landau levels, reflects
the underlying topology of the cylindrical surface.

III.Vortex array on a cylindrical surface: The condensate
wavefunction is φ =

√
n exp(iΘ), where n is the density profile

and Θ is its phase function. For a condensate containing vor-
tices, its wave function can be approximated as

√
n =
√

nT H f ,
where nT F is the Thomas-Fermi (TF) density profile in the ab-
sence of vortices, and f is a function that is 1 everywhere ex-
cept within a region of the size of the coherence length around
the vortex singularity. In our calculations, we shall use the
variational form

f (u) =
∏

j

tanh
|u − u j|

ξ
(12)

for a system with vortices located at u j, where ξ is the core
size, also written in units of R. This form has been shown
to match well with experiment for rotating gases[24]. For a
condensate with A-vortices at points ({u j, j = 1, . . . ,Q}) and
B-vortices on another set of points ({u j′ , j′ = 1, . . . ,Q′}), we
take the following variational form of phase function Θ,

exp(iΘ) = W/|W |, W =

Q∏
j=1

W+
j

Q′∏
j′=1

W−
j′ . (13)

The entire variational wave function is therefore specified by
the total number particle (which fixes the chemical potential
and hence nT H [20], and the location of vortices.

With the variational wavefunction φ =
√

nT F f exp(iΘ), the
energy in Eq.(2) becomes a function of the coordinates (ϕ j, z j)
of the vortices[20]. We have searched for the minimum of this
function numerically by varying the vortex locations. Since
the system has reflection symmetry in z-direction, A and B
vortices must appear in pairs at appropriate location to respect
this symmetry. Our results are shown in Fig. 3. We have
found that for S ≤ 4, the gauge field is not strong enough
to generate vortices in the ground state. For S = 5, 6, 7, 8,
there are 4, 6, 8, 10 vortices respectively lying on the circle at
z = 0 (i.e. z j = 0). These “necklaces” of vortices are all in
the alternating pattern A-B-A-B-.. . . . with equal spacing. For
S ≥ 9, the vortices split into two rows, with the A-vortices
shifted above and B-vortices shifted below z = 0[20].

The reason that the vortex pattern is so different from the
planar case is a consequence of the confining geometry (lack
of trapping potential along ϕ direction). We can see the con-
nection of the necklace pattern to the usual hexagonal pattern
in the following hypothetical process. Assuming S can be in-
creased continuously, the vortices will grow in number and
will split into more and more necklaces. The hexagonal ar-
ray is the limit where the number of necklaces approaches the
number of vortices within one necklace. The S = 9 example
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FIG. 2. Figure (a) and (b) are velocity profiles for the A and B vortex
respective. The velocity of the A (or B) vortex reaches a constant
above (below) the vortex core and vanishes below (above) it over a
distance of R. Figure (c) shows the velocity profile of a necklace of
six alternating AB vortices. It is equivalent to the velocity profile of
two counter circulating superfluid rings.
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FIG. 3. For S ≤ 4, the ground state contains no vortex. Within
S = 5, 6, 7, 8, the vortices aligned in one row at zi = 0 with the
pattern A-B-A-B. For S ≥ 9, the vortices array splits into two rows
centering at zi = ±Z, with all A vortices aligned in one row and all B
vortices in another.

in Fig. 3 can be viewed as a tendency towards the hexagonal
lattice limit.

To conclude, we examine the phase function and velocity
field of the alternating vortex row in greater detail. Let us
consider the case of S = 6 (corresponding to 168Er) where the
ground state has a necklace of 6 equally spaced, alternating A
and B vortices at z = 0 and ϕ = n 2π

6 , where n = 0, 1, . . . , 5.
Defining w = eiu = eiϕ− 2S

ν z, and α = e2π/6, the phase function
W in Eq.(13) is

W =
∏

n=0,1,2

[
(w − α2n)(w−1 − α−(2n+1))

]
= w3 − w−3 (14)
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The wave function is then

φ(ϕ, z) ∼
√

1 − z2 f (ϕ, z)
e3iϕ−3z 2S

ν − e−3iϕ+3z 2S
ν

|e3iϕ−3z 2S
ν − e−3iϕ+3z 2S

ν |
. (15)

For z > 0 (z < 0), φ(ϕ, z) quickly approaches e−3iϕ ( e3iϕ). The
system is essentially two counter circulating superflows above
and below z = 0, as shown in Fig.2(c).

FIG. 4. The time of flight image of the vortex row in figure 2(c),
taken at the time t such that xo/R =

√
~t/m/R = 7 on the x-y plane

at z = 0. Length is measured in units of R. The 2n-fold symmetry of
the image reflects the number of vortices in the vortex row.

IV. Signature of the vortex array: The presence of these
alternating vortex array can be detected in time of flight ex-
periments. As we have discussed, a necklace of 2n vortices
will generate two counter phase superflow e−inϕ and e+inϕ for
z > 0 and z < 0. The system can be approximated by two
rings of condensates with opposite circulation, with one ring
sitting above the other along z with a separation of the order
of their radius R. In the time of flight experiment, these two
rings will produce an interference at the z = 0 plane of the
form e−inϕ + e+inϕ and exhibit a density pattern with 2n-fold
symmetry. This effect is in fact found in an explicit calcula-
tion of the ballistic expansion of the vortex row condensate in
Eq.(15). The time evolution of the condensate is given by

φ(x, t) =

∫ 1

−1
dz

∫ π

−π

dϕU(ϕ, z, t;ϕ′, z′)φ(ϕ′, z′). (16)

where U(ϕ, z, t;ϕ′, z′) is the Green’s function for free
particle propagation at large distance and at long
times in cylindrical coordinates, U(ϕ, z, t;ϕ′, z′) ≈

exp
[
−i(Rr cos(ϕ − ϕ′) + ( 2S

ν
)2zz′)/x2

0

]
, and x0 =

√
~t/m.

The density pattern at the equatorial plane z = 0 at long
times is shown in Fig.4. Experimentally, the density of the
expanded cloud in the equatorial plane (at z = 0) can be
measured by first using a sheet of light to excite the original
atoms (denoted as “a”) in this plane to a different atomic state
(say, “b”), and then image the atoms in the b state afterwards.

Concluding Remarks: The emergence of two kinds of vor-
tices with identical vorticity in a cylindrical manifold is a
new feature of Bose condensates in a cylinder. It is a con-
sequence of the topological constraint on the single valueness
of the wave function (i.e. that forces the spatial dependence to
be expressed in terms of einϕ), which will persist even when
the manifold is deformed. Although we focus on a particu-
lar aspect of the quantum gas in curved surfaces, there are a
lot more to explore especially for systems with greater com-
plexity. Realization of quantum gases in curved surfaces will
surely open an exciting direction for cold atom research.
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