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Theoretical analysis and fully atomistic molecular dynamics simulations reveal a Brownian ratchet
mechanism by which thermal fluctuations drive the net displacement of immiscible liquids confined
in channels or pores with micro- or nanoscale dimensions. The thermally-driven displacement is
induced by surface nanostructures with directional asymmetry and can occur against the direction
of action of wetting or capillary forces. Mean displacement rates in molecular dynamics simulations
are predicted via analytical solution of a Smoluchowski diffusion equation for the position probability
density. The proposed physical mechanisms and derived analytical expressions can be applied to
engineer surface nanostructures for controlling the dynamics of diverse wetting processes such as
capillary filling, wicking, and imbibition in micro- or nanoscale systems.

PACS numbers: 47.85.-g; 82.70.Dd; 47.61.Jd

Advances in nanofabrication have enabled the engi-
neering of nanostructured surfaces with geometric fea-
tures as small as a few nanometers [1–3]. At nanoscales,
the interplay between intermolecular forces, Brownian
motion, and surface structure can give rise to com-
plex interfacial phenomena that challenge conventional,
continuum-based and deterministic, models [4–6]. For
example, nanoscale surface structures can induce wetting
processes governed by thermally-activated transitions be-
tween multiple metastable states [7–12]. These random
transitions lead to directed transport of fluids and so-
lutes when there is directional asymmetry of the energy
barriers induced by the physicochemical structure of the
confining surfaces [13–15]. Similarly, entropic barriers
can induce directed transport of Brownian particles in
microscale channels and pores with periodic corrugations
[16, 17]. Systems where thermal fluctuations drive net di-
rectional motion, while performing work against “load”
or resistance forces, are known as thermal ratchets or
Brownian motors and have been extensively studied in
the framework of statistical physics [18–20].

Thermal ratchets can operate without thermal or
chemical gradients provided that the system has not
reached all necessary conditions for thermodynamic equi-
librium [19, 20]. A variety of novel nano/microfluidic
devices perform as thermal ratchets to accomplish the
handling, separation, and detection of diverse solutes
(e.g., DNA, macromolecules, ionic species) and/or col-
loidal particles with an unprecedented precision [21–24].
These devices usually work with single-phase fluid sol-
vents and must combine external electromagnetic fields,
electrolyte solutes in proper concentration, and forma-
tion of electric double layers in order to induce en-
ergy landscapes with directional asymmetry (i.e., ratchet
potentials). A different class of ratchet systems in-
volving multiphase fluids has been demonstrated to
produce “self-propulsion” of micro- or millimeter-sized
droplets by combining micro/nanostructured surfaces,
thermal/chemical gradients, and/or mechanical vibration
[25–28]. Self-propulsion mechanisms in these multiphase

systems are attributed to diverse dynamic phenomena,
such as capillarity and contact angle hysteresis [27], or
evaporation flows and the Leidenfrost effect [28], where
thermal fluctuations play a secondary role.

In this Letter, we study a multiphase (two fluid) sys-
tem that can perform as a thermal ratchet under isother-
mal and incompressible conditions, with or without the
presence of electrolyte solutes and net surface charge.
In this class of system the thermal ratchet mechanism
is enabled by surface nanostructures that induce surface
energy barriers with directional asymmetry. The partic-
ular configuration considered in this work, illustrated in
Fig. 1a, consists of two macroscopically immiscible liq-
uids (fluid-1 and fluid-2) confined in a slit-shaped chan-
nel or pore of height ho, length l, and width w � ho.
The surfaces confining the fluids are chemically homoge-
neous and neutrally charged. One of the surfaces has a
terraced structure with regular tread length s and riser
height r [cf. Fig. 1a] of nanometric dimensions. Similar
terraced structures have been synthesized on crystalline
substrates via diverse nanofabrication techniques such as
wet etching, high-temperature annealing, and deposition
of epitaxial films [1, 29–31]. The studied terraced struc-
ture with NS steps reduces the local height of the channel
according to h(x) = ho − rbx/sc for 0 ≤ x < (NS + 1)s
(here, ho = h(0), bxc ≡ floor(x) is the floor function, and
x is the coordinate in the longitudinal direction). In the
presence of an interface between two immiscible fluids, in-
terplays between thermal motion and surface energy bar-
riers induced by the nanoscale structure can drive imbi-
bition and filling/drainage processes in micro/nanoscale
channels or pores for a range of wettability conditions
unanticipated by conventional wetting models.

Analytical descriptions of thermally-driven wetting
processes must consider that atoms or molecules in a
liquid-fluid interface undergo thermal motion. We will
analyze the case of unidirectional motion described by
the average position x(t) of all atoms of the first fluid
species (fluid-1) that lie at the front liquid-liquid inter-
face [cf. Fig. 1a]. Adopting the average interface position
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FIG. 1. Modeled system and geometric configuration. (a)
Slit channel (height ho, length l, and width w) confining two
immiscible liquids. A terraced structure (tread s and riser r)
of nanoscale dimensions lies on the bottom wall. (b) Volume
fraction φ(t) in different MD realizations and its ensemble
average 〈φ(t)〉 (time reported in MD units τ ' 1 ps). MD
simulations correspond to s = 6∆x and r = 6∆x under neu-
tral wetting conditions θY = 90◦. Dashed lines indicate filling
fractions φn = φ(xn) for x(t) = ns (n = 1, NS + 1). (c) Se-
quence of three time instances in MD simulations for contact
angles θY ' 85–95◦. Imbibition of fluid-1 into the volume V
above the terraced structure is observed for θY & 90◦ when
capillary forces are neutral or negative F = −∂U/∂x ≤ 0.

to describe the dynamics of the confined molecular fluids
implies projecting the (multidimensional) system energy
landscape onto a one-dimensional profile U(x) along a
“reaction coordinate” x. The sequence of random dis-
placements of the front interface position can be statis-
tically described by the conditional probability density
p(x, t) ≡ p(x, t|xo, to); here, xo = x(to) is the average
interface position observed at a time to. Assuming over-
damped Brownian dynamics, the evolution of the prob-
ability density p(x, t) is governed by the Smoluchowski
diffusion equation[31, 32]

∂

∂t
p(x, t) =

∂

∂x

1

ξ(x)

[
kBT

∂

∂x
+
∂U

∂x

]
p(x, t) (1)

where kBT is the thermal energy (here, kB is the Boltz-
mann constant and T = const. is the system temper-
ature) and ξ(x) is the piecewise constant resistivity or
friction factor. For the studied conditions we consider a
linear friction force Ff = −ξdx/dt that is mainly due to
hydrodynamic effects and thus

ξ(x) = kHµh(x)w

[
l − sNS

h2o
+

NS∑
n=1

s

(ho − nr)2

]
(2)

where kH is a drag coefficient, µ is the shear viscosity of
the confined fluids, and NS is the total number terraces
in the structure. For analytical simplicity, we consider
in Eq. 2 the case that both fluid-1 and fluid-2 are liq-
uids with the same viscosity µ = µ1 = µ2. Expressions

for µ1 6= µ2 can be readily derived using similar hydro-
dynamic arguments; it is worth noticing that the local
resistivity ξ will be significantly reduced when one of the
phases is a vapor or gas (e.g., if µ2 � µ). Analytical esti-
mates of the drag coefficient kH in Eq. 2 can be obtained
by making simplifying assumptions about the modes of
translation of the interface and the hydrodynamic veloc-
ity profiles induced. A drag coefficient kH = 4 is ob-
tained by naively assuming that a linear flow profile (i.e.,
Couette flow between two flat surfaces) develops after
the sudden displacement of the contact line on one wall,
while the contact line on the opposite wall remains sta-
tionary.

For isothermal and incompressible conditions and as-
suming sharp interfaces, the free energy profile is deter-
mined by surface energy contributions

U(x) = γ[wh(x)− cos θYA1S(x)] + const. (3)

Here, γ is the interfacial energy of the liquid-liquid in-
terface, θY is the Young contact angle measured on the
fluid-1 phase, and A1S is the area of the interface between
the fluid-1 and solid phases. In the studied configuration
the distance between the front and rear liquid-liquid in-
terfaces is larger than the length of the terraced struc-
ture, which allows us to simplify the analysis. While the
front interface moves inside each terrace there is a linear
change in the interfacial area A1S(x) that results from
conservation of volume, and thus we have

∂U(x)

∂x
= −Fn = −2nγ cos θY

wr

ho
(4)

for ns < x < (n+ 1)s (n = 1, NS).
The energy profile U(x) (Eq. 3) exhibits sharp energy

increments ∆U− ' γwr when moving in the negative x-
direction across the edge of a terrace at position xn = ns
(n = 1, NS). Hence, periodic energy barriers ∆U− at
regular steps s hinder backward random displacements
as the liquid-liquid interface undergoes thermal motion
along the terraced surface. The time to cross over an
energy barrier induced by nanoscale surface features can
be predicted via Kramers theory of thermally-activated
transitions, as documented in prior work [9, 10]. For
the present analysis, it suffices to recognize that a mean
time T− ∝ exp(∆U−/kBT ) must elapse before observ-
ing a backward displacement of the interface over a ter-
race edge. Therefore, over a time interval t < T− the
presence of the energy barrier ∆U− can be treated as
a reflective boundary condition for Eq. 1 imposed at the
edge of each terrace. Furthermore, the friction coefficient
(Eq. 2) and the wetting or capillary force (Eq. 4) remain
constant within each of the NS terraces. Hence, we have
ξn = ξ(x) = const and Fn = −∂U(x)/∂x = const for
ns < x < (n + 1)s, which facilitates the analytical solu-
tion of Eq. 1. In order to solve Eq. 1 within each ter-
race for which the edge lies at xn = ns, it is convenient
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to introduce the dimensionless position x = (x − xn)/s
and time t = (t − to)(kBT/ξns

2). In addition, we intro-
duce the dimensionless force parameter Cn = Fns/kBT
given by the ratio of the work performed by the wet-
ting force to the thermal energy within each terrace.
For a reflective boundary at xn and initial condition
xo = xn the analytical solution of Eq. 1 is given by
[31, 33] pn(x, t) ≡ p(x, t;Cn) = pn/s, where

pn(x, t) =
1√
πt

exp

[
− (x+ Cnt)

2

4t

]
(5)

+
1

2
Cn exp [−Cnx] erfc

[
(x− Cnt)√

4t

]
is a dimensionless function determined by the variables
x ≥ 0 and t ≥ 0 for a given force parameter Cn. The
mean displacement of the front liquid-liquid interface ac-
cording to Eq. 5 is 〈x(t)− xn〉 = sXn(t), where

Xn(t) =

∫ ∞
0

pn(x, t)xdx (6)

is the dimensionless mean displacement within the n-th
terrace. Taking the upper integration limit to infinity
in Eq. 6 is an approximation valid for finite times t �
(n−NS + 1)2s2kBT/ξn. From Eq. 6 we can estimate the
mean time

tn = t1 +
s2

kBT

n−1∑
k=1

ξkX−1k (1) (7)

at which 〈x(tn)〉 = xn (n = 1, NS + 1). Here, X−1n is the
inverse of the dimensionless mean displacement function
in Eq. 6 and t1 is the time at which 〈x(t1)〉 = s.

A few comments are in order. Analytical integra-
tion in Eq. 6 is feasible and thus the dimensionless
time Tn = (tn+1 − tn)kBT/ξns

2 to traverse the n-th
terrace (n = 1, NS) can be obtained by solving the
implicit equation Xn(Tn) = 1. The inverse function
X−1n (1) = Tn ≡ T (Cn) in Eq. 7 is uniquely determined
by the dimensionless force parameter Cn = Fns/kBT ;
the function Tn → ∞ diverges at Cn = −1 and de-
cays Tn → 0 for Cn → ∞. An approximate explicit
expression Tn = (4/πC2

n)(1−
√

1 + (π/2)Cn)2 can be ob-
tained from a first-order Taylor expansion of Eq. 5 about
Cn = 0; this approximation yields less than 10% error
for |Cn| < 1/2. For a neutral contact angle θY = 90◦

the wetting force vanishes Fn = 0 and thus Tn = π/4
for n = 1, NS . Moreover, under neutral wetting condi-
tions Eq. 6 predicts a mean displacement 〈x(t)〉 =

√
2Dot

characteristic of diffusive processes, with an effective dif-
fusivity Do = (2/π)(kBT/ξn). Notably, forward liquid
displacements 〈x(t)〉 > 0 against wetting forces Fn < 0
are expected to occur for contact angles θY > 90◦ pro-
vided that −2nγ cos θY w × (r/ho) < kBT/s.

In order to verify analytical predictions and underly-
ing assumptions we perform fully atomistic molecular dy-
namics (MD) to simulate the dynamics arising from cou-
plings between Brownian motion, hydrodynamic effects,

and wetting forces. The MD techniques employed in this
work are extensively described in the literature [34, 35]
and prior work by the authors [9, 10]. The simulated
system [see Fig. 1a] comprises two monatomic liquids
(atomic species i = 1, 2) labeled as fluid-1 and fluid-2,
and a crystalline solid (atomic species i = 3). Atomic
interactions are modeled by pairwise Lennard-Jones po-
tentials uLJ(r) = ε[(r/σ)−12 − cij(r/σ)−6], where ε is a
characteristic interaction energy, cij = cji is a symmetric
attraction coefficient between species (i, j = 1, 3), r is the
(3D) interatomic distance between any two atoms, and
σ is the diameter of the repulsive core, which roughly
correspond to the atomic diameter. The time scale of
atomic displacements is τ = σ

√
m/ε and is in the order

of picoseconds for simple molecular liquids; the atomic
mass m of the liquid species is set to be equal for both
modeled liquids. The equations of motion in three di-
mensional space are integrated using a small time step
δ = 0.004τ . A Nose-Hoover thermostat [34, 36] mod-
els the interaction with a thermal bath, regulating the
system temperature to a prescribed value. In all MD
simulations in this work the prescribed temperature is
T = 2ε/kBT , the mean number density is 〈ρ〉 = 0.8/σ3

and the shear viscosity is µ = 2.4m/(στ) for both liq-
uids. Solid atoms form a face-cubic-centered (fcc) lattice
with uniform spacing ∆x = 0.8−1/3σ; typical values of
∆x for crystalline solids range between 0.2 and 0.5 nm.
The set of values employed for the attraction coefficients
(c12 = 0.5, c13 = 0.8, 0.75 ≤ c23 ≤ 0.95, and cii = 1) ren-
der two macroscopically immiscible fluids with a liquid-
liquid interfacial tension γ = 1.2ε/σ2 and Young contact
angles near neutral wetting conditions 85◦ ≤ θY ≤ 100◦.

The studied geometric configuration [cf. Fig. 1a] con-
sists of a slit nanoscale channel of height ho = 30–60∆x,
length l = 70∆x, and width w = 10∆x; periodic bound-
ary conditions are applied in the x- and z-direction. The
bottom wall has different surface structures with NS = 5–
11 terraces of length s = 3–9∆x and riser height r = 1–
2∆x. The volume confined above the terraced structure
is V = ws

∑NS

k=1[ho − kr]. The fluid-1 phase fills a frac-
tion φ(x) = xw(ho + s)/V − x2(wr/2V s) +O(r/h(x)) of
the volume V as the front liquid interface moves within
s ≤ x(t) ≤ (NS + 1)s [cf. Fig. 1a]. In our MD simula-
tions, the number density is constant and the filling frac-
tion φ(t) = n1/(n1 + n2) is directly computed from the
number of atoms of fluid-1, n1, and fluid-2, n2, occupy-
ing the volume V . At initialization, the volume V is fully
occupied by the fluid-2 phase and thus φ(t = 0) = 0. The
filling fraction φ(t) for six MD realizations [37] and the
ensemble average 〈φ(t)〉 are reported in Fig. 1b for one of
the studied structures (s = 6∆x, r = 2∆x) and neutral
wetting conditions (c13 = c23 = 0.8). As seen in Figs. 1b,
the mean filling fraction 〈φ(t)〉 uniformly increases with
time while individual MD realizations exhibit rapid tran-
sitions between “long-lived” metastable states at specific
values φn ' φ(xn) (n = 1, NS + 1). The imbibition
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FIG. 2. Thermally-driven wetting on terraced nanostruc-
tures. Solid lines: linear interpolation between coordinate
pairs (xn,tn); xn = ns (n = 1, NS + 1) and tn given by Eq. 7.
Markers: ensemble average quantities from MD simulations
[see legends]. Geometric dimensions are in lattice units: chan-
nel height h = ho/∆x = 30–60, terrace length s = s/∆x = 3–
6, riser height r = s/∆x = 1–2. (a)–(c) Imbibition under neu-
tral wetting θY = 90◦: (a) mean filling fraction 〈φ(t)〉 (time
in MD units τ); (b) dimensionless displacement 〈x(t/TD)〉/s
where TD = TD = s2ξo/kBT ; (c) dimensionless displacement
〈x(t)〉/s for different channel heights. (d) Dimensionless dis-
placement 〈x(t/TD)〉/s for contact angles θY = 85◦, 90◦, 95◦,
and 98◦ for which CNS = 0.7, 0, -0.7, and -1, respectively.

process occurs within a range of Young contact angles
θY & 90 [cf. Fig 1c] for which capillary forces can be
neutral or negative (Fn = −∂U/∂x . 0). Displacement
beyond the last terrace edge, where φ(xNS+1) = 1, is
prevented by a large energy barrier ∆U+ = γNSrw.

Theoretical predictions from Eq. 7 for mean displace-
ments, 〈x(tn)〉 = xn, and filling fractions, 〈φ(tn)〉 =
φ(xn), are in close agreement with MD simulations re-
ported in Figs. 2–3 when using kH = 4–5.5 in Eq. 2 for
different structures. As seen in Fig. 2a, the mean filling
rate is approximately constant 〈φ̇(t)〉 ' const under neu-
tral wetting conditions θ = 90◦ for the different studied
structures. Notably, mean displacements 〈x(t)〉 collapse
to a unique curve when scaling by the terrace length s and
diffusion time TD = s2ξo/kBT as showed in Fig. 2b; here,
ξo = ξ(0) is the resistivity in Eq. 2 for h(x = 0) = ho.
As shown in Fig. 2c, increasing the channel height ho
for a given length l enhances the interface displacement
rate by decreasing the local resistivity ξ(x). The effect
of varying the contact angle θY and thus the wetting
force Fn (Eq. 7) can be seen in Fig. 2d. For θY . 90◦

the mean displacement is enhanced by positive wetting
forces Fn > 0. As predicted, positive displacements still
can be observed for θY & 90◦ when Fns/kBT > −1; the
most adverse wetting force FNS

' −kBT/s corresponds
to θY ' 98◦ (s = s/∆x = 6, r = r/∆x = 2) in Fig. 2d.

Results reported in Fig. 2 confirm that a thermal
ratchet mechanism mediated by surface energy barriers
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FIG. 3. Failure of the thermal ratchet mechanism. (a) Dimen-
sionless displacement 〈x(t/TD)〉/s in MD simulations for large
terrace length s = 9 and two riser heights s =1–2 (θY = 90◦,
h = 30). (b) Schematic of the failure and onset of diffusive
motion with zero mean displacement for T− ≤ t < T− + Tn.

∆U− ' γwr can lead to thermally-driven transport of
immiscible liquids in slit channels or pores. This phe-
nomenon is expected to occur provided that the time
T− ∝ exp(−γwr/kBT ) to cross over each energy bar-
rier is larger than the time tn − tn−1 (Eq. 7) to traverse
the n-th terrace. Indeed, MD simulations for large ter-
race length s = 9∆x and small riser height r = ∆x [see
Fig 3a] report a decay in the mean displacement rate
after a time T− ' TD. Increasing the energy barrier
∆U− by increasing the riser height to r = 2∆x pre-
vents the observed decay in the displacement rate [see
Fig 3a]. Increasing the width w would similarly increase
∆U− and the critical terrace length for which rectification
of thermal motion fails, albeit at the cost of increasing
the resistivity ξ in Eq. 2 which could significantly reduce
mean displacement rates. As illustrated in Fig 3b, the
mean displacement rate is expected to vanish 〈ẋ(t)〉 → 0
for t > T−, after which unbiased Brownian motion per-
sists over a time Tn = s2ξn/kBT = TD × (hn/ho). For
T− < t ≤ T− + Tn Brownian motion with a mean square
displacement 〈x2(t)〉 = 2(kBT/ξn)t causes the liquid-
liquid interface to diffuse to the next terrace edge, after
which thermal motion becomes biased, 〈ẋ(t)〉 > 0, and
the cycle repeats.

In conclusion, theoretical description in the framework
of statistical physics predicts that surface nanostruc-
tures with directional asymmetry can induce nontrivial
wetting processes that are beyond the reach of conven-
tional continuum-based models (e.g., Lucas-Washburn
equation). Fully-atomistic simulations showing close
agreement with theoretical predictions document the
thermally-induced displacement of immiscible fluids con-
fined in a slit channel or pore with a nanoscale terraced
structure. For the studied nanoscale systems under neu-
tral wetting conditions, a water-air interface would ex-
hibit mean displacement rates between 0.1 and 1 m/s.
Moreover, the observed fluid displacement can oppose
the action of wetting or capillary forces. Hence, the
studied mechanism can induce the wetting and dewetting
of nanostructured pores or capillaries under unexpected
wettability conditions. The proposed thermal ratchet
without external actuation could enable novel nanofluidic
devices for passive handling and separation and smart
porous materials for selective transport and filtration.
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