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Squaring the circle: Geometric skewness and symmetry breaking for passive scalar

transport in ducts and pipes.
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We study the role geometry plays in the emergence of asymmetries in diffusing passive scalars
advected by pressure-driven flows in ducts and pipes of different aspect ratios. We uncover non-
intuitive, multi-timescale behavior gauged by a new statistic, we term “geometric skewness”, SG,
which measures instantaneously forming asymmetries at short-times due to flow geometry. This
signature distinguishes elliptical pipes of any aspect ratio, for which SG = 0, from rectangular
ducts whose SG is generically nonzero, and, interestingly, shows that a special duct of aspect ratio
≈ 0.53335 behaves like a circular pipe, as its geometric skewness vanishes. Using a combination
of exact solutions, novel short-time asymptotics, and Monte-Carlo simulations, we establish the
relevant timescales for plateaus and extrema in the evolution of the skewness and kurtosis for our
class of geometries. For ducts limiting to channel geometries, we present new exact, single-series
formulae for the first four moments on slices, used to benchmark Monte-Carlo simulations.

Introduction. Taylor dispersion quantifies the long-
time effective longitudinal diffusion of a tracer advected
by a steady shear flow [1]. The result for a circular pipe

is κeff = κ(1 + â2U2

192κ2 ), where â, U , and κ are the radius
of the circular cross-section, characteristic velocity, and
molecular diffusivity, respectively. Describing the tracer
evolution well before the diffusion timescale t = O(â2/κ)
is more challenging. Here, the distribution is both greatly
non-normal and strongly spatially structured. Addition-
ally, understanding the cross-sectional geometric influ-
ence is a physically relevant problem. There are many re-
sults for both channel and circular pipe, for point-source
[2–4], uniform plug [2, 3, 5–8], and other initial condi-
tions [4, 9]. Considerably less is known for intermediate
timescales in the duct, nor for more general geometries.
The simplest case is the channel with a transversely-

uniform initial condition. Even this is not trivial. While
the solution and its moments can be calculated via
Green’s function or eigenfunction expansion, it can be
difficult to extract useful information directly from these
due to nested integrals or multiple series.
Here, we focus upon the evolution of the skewness in

different geometries to understand symmetry-breaking.
The skewness, the centered normalized third moment,
is the lowest order statistic of a distribution whose sign
identifies asymmetry due to the slowest tail decay being
on the left(negative)- or right(positive)-side of the mean.
Characterizing asymmetric effects may play important
roles over scales from drug delivery via capillary blood
flow [10], to the distribution of contaminants in rivers
and estuaries [11], and is potentially relevant in under-
standing the motion of organisms driven by chemotaxis
[12].
In this work, we document new phenomena and de-
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velop new mathematical techniques to provide quantita-
tive predictions. In the process, we introduce a new con-
cept we term geometric skewness SG measuring the inter-
play between geometry and flow in breaking the symme-
try of the distribution, even in the absence of diffusion.
For uniform initial data in the channel, we use the Aris

[13] moment hierarchy to derive, for the first time, single-
series formulae for the first three moments along stream-
wise slices (henceforth, “partial” moments), as well as
their cross-sectionally averaged counterparts through the
fourth moment (“full” moments). We then implement
Monte-Carlo simulations, validated against our exact
channel solutions. In turn, we explore the dependence of
the moments on Péclet number and cross-sectional geom-
etry in more complex domains, focusing on three cases:
channel, elliptical pipe, and rectangular duct, parameter-
ized by λ = a/b, the aspect ratio of short/long half-sides.
To explain numerically observed phenomena, we derive
short-time asymptotics in generic domains with a new
methodology developed below.
We next apply our asymptotics for large Péclet num-

ber, for which the full skewness plateaus at the value of
the geometric skewness SG , at a timescale a/U . We dis-
cuss the ordering of this and other known timescales in
the large Péclet regime.
Advection-diffusion equation and geometries.

The tracer density T (x, t) evolves according to the
advection-diffusion equation with diffusivity κ:

∂tT + ũ ∂xT = κ(∂2
x + L)(T ), (1)

Here, T (x, 0) = f(x), ∂nT |∂Ω = 0, x = xi + yj + zk is
the coordinate system in R

3; ũ(x) = ũ(y, z)i is the fluid
velocity; the initial data f(x) a symmetric function with
variance σ2, and taken to be a Dirac-delta, δ(x) (uniform
in y and z) unless otherwise stated; the boundary condi-
tions are zero-flux on ∂Ω with outward normal n, and Ω
is the cross-sectional domain perpendicular to i; finally,
L = ∂2

y + ∂2
z .

The flows are steady-state solutions to the Navier-
Stokes equations L(ũ) = 2px/µ with a constant pressure
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gradient ∇p = pxi, px < 0, with viscosity µ and no-slip
boundary conditions (2 for convenience). Simple solu-
tions for channel/ellipse exist, while duct requires eigen-
function expansion [14].
In the mean velocity frame, denoting u = ũ − 〈ũ〉,

where 〈·〉 is the area mean over Ω, system (1) retains
the same form with flow u instead of ũ. With nondi-
mensionalized x′ and τ as x′ = x/a and τ = (κ/a2)t,
with Péclet number, Pe = Ua/κ, using characteristic ve-
locity U = a2|px|/µ based on a fixed pressure gradient,
and immediately dropping the primes (alternative nondi-
mensionalizations discussed below), the partial moments
Tn =

∫

R
dxxnT (x, t) obey [13]:

∂τTn − L(Tn) = n(n− 1)Tn−2 + Pe u(x)nTn−1, (2)

with Tn(y, z, 0) =
∫

R
dxxnf(x), ∂nTn|∂Ω = 0, and n =

0, 1, ..., T−2 = T−1 = 0.
The full moments are: Mn ≡

∫

R
dxxn〈T (x, y, z, τ)〉.

The partial skewness (kurtosis) is the centered third
(fourth) partial moment normalized by its standard de-
viation to the third (fourth) power; similarly for the full
quantities.
Exact solutions in the channel. For the channel,

the first three partial moments and full fourth moment
for (1) have the following single-series solutions:

T1(y, τ) = Pe P1(y, τ) + Pe
∑∞

n=1
P2(y, τ ;n) cos (nπy),

T2(y, τ) = σ2 + 2τ + Pe2Q1(y, τ)

+Pe2
∑∞

n=1
(Q2(y, τ ;n) cos (nπy) +Q3(y, τ ;n) sin (nπy)),

T3(y, τ) = Pe R1(y, τ) + Pe
∑∞

n=1
R2(y, τ ;n) cos (nπy)

+Pe3
∑∞

n=1
(R3(y, τ ;n) cos (nπy) +R4(y, τ ;n) sin (nπy))

+Pe3 R5(y, τ) + 3σ2T1(y, τ),

M4(τ) = f4 +
∑∞

n=1
(Pe2 S1(τ ;n) + Pe4 S2(τ ;n))

+12 τ2 + Pe2 S3(τ) + Pe4 S4(τ) + 6σ2M2(τ),
(3)

where Pj , Qj , Rj and Sj depend on τ , y and n [15], where
σ2 is the variance of f(x) and f4, the fourth moment.
These formulae are new; in previous work [3] double-

series formula exist for the second partial moment,
whereas here the first three partial moments are sin-
gle series. We stress that these formulae arise through
extremely lengthy complex residue calculations subse-
quently verified by symbolic manipulators. Direct calcu-
lations show that for any y, the partial skewness becomes
strictly negative at long time, whereas for short time,
near the boundaries, it is positive, indicating a timescale
of global sign-definiteness.
Simulations. Monte-Carlo simulations yield the

tracer distribution evolution for general geometries. The
stochastic process dX(τ) = Peu(X(τ))dτ +

√
2dW(τ)

yields (1). Here dW(τ) is uncorrelated R
3 Wiener in-

crements with reflecting boundaries on ∂Ω. Simula-
tions performed with 106 particles distributed according
to f(x) in (1). Euler-Maruyama timestepping is used
with a timestep ∆τ ≤ 10−3, to compute the statistics
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FIG. 1. (Color online.) Channel full-skewness and kurtosis
(inset) exact solutions versus Monte-Carlo, Pe = 104.

Tn(y, z, τ), Mn(τ). The duct flow is computed summing
the largest 2048 Fourier modes. The Gaussian random
increments dW are generated with the Mersenne Twister
[16] and polar method [17]. Statistics are averaged over
100 independent realizations, for 108 sample paths. Nu-
merics are validated against channel exact moments, fig-
ure 1, with uniform agreement and absolute error≤ 10−4,
over ten diffusive timescales, consistently with the Law
of Large Numbers.

Figure 2 shows the duct (λ = 0.2) full skewness:
multiple minima arise not present in the channel case.
Negative skewness is seen in the right columns because
tracer particles reach farther to the left than to the right
from the mean (x = 0). Figure 3 depicts the skewness
for varying Péclet at fixed aspect ratio. Two minima
emerge: one migrating towards τ = 0, the other at a
fixed timescale, for increasing Péclet. (Similar behavior
occurs for point-source initial data, in future work.) Pos-
sible physical timescales affecting this are: κ/U2, a/U ,
b/U , a2/κ, ab/κ, b2/κ. For large Péclet, some timescales
are ordered: κ/U2 < a/U < a2/κ < ab/κ < b2/κ.
Timescales corresponding to skewness features are re-
vealed by new asymptotic analysis, predicting the first
plateau at timescales a/U as Pe → ∞.

Short-time asymptotics and geometric skew-

ness. To better understand this behavior, we now
present a new method to obtain general multi-term short-
time asymptotics for arbitrary cross-sectional domains.
For the first moment, assume an expansion T1(y, z, τ) ∼
(T̃1τ |τ=0) τ + (T̃1ττ |τ=0)

τ2

2
.

Matching gives T̃1τ |τ=0 = u(y, z) and T̃1ττ |τ=0 =
L(u). However, conservation of T1 requires
∫

Ω
dy dz T1(y, z, τ) = 0 for all time. These initial

coefficients violate conservation, since L(u) = 2px/µ 6= 0.

Subtracting uτ above from T1 in (3) further reveals two
Dirac-delta limiting sequences at the walls in a bound-
ary layer of thickness

√
τ . The quadratic term L(u)τ2/2

survives in the interior, suggestive of Gaussian boundary
layers at short-time. Hence, these terms needs to be in-
corporated to accurately capture the evolution. This pro-
vides a new method applicable to any geometry for gen-
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FIG. 2. (Color online.) Mean-zero flow profile u(y, z) and full
skewness (left) for duct (aspect ratio λ = 0.2, Pe = 104), with
snapshots of the xy and xz projections of a sample path at
times marked by red lines in the skewness graph: τ = 10−4

(center) and τ = 4.4 (right).
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FIG. 3. (Color online.) Evolution of the full skewness for
duct (pipe, inset), λ = 1/5, Péclet 100 − 106. Xs denote large
Pe prediction of minima.

erating short-time asymptotics, valid uniformly in space,
for arbitrary moments.
Define the following Dirac-delta correction term (heat

kernels for τ → 0+), “stringing” them over ∂Ω:

T1(y, z, τ) ∼ u(y, z) τ + (L(u)− (∂nu) δb) τ
2/2, (4)

with δb(y) ≡
∫

∂Ω
dy′δ(y−y′) (outward normal n). Inte-

grating over the domain, the divergence theorem shows
conservation is satisfied. The same process yields short-
time asymptotics for T2, T3, M2, M3 and M4. The
general short-time asymptotics for full moments of (1),
Dirac-delta initial condition, are:

M1 ∼ 0, M2 ∼ 2 τ + Pe2〈u2〉 τ2 + 1

3
Pe2L(u) 〈ũ〉 τ3,

M3 ∼ Pe3〈u3〉 τ3 + 1

2
Pe3L(u)

(

〈ũ2〉 − 2〈ũ〉2
)

τ4,

M4 ∼ 12 τ2 + 12Pe2τ3〈u2〉+ 1

5
Pe4τ5L(u)〈u3〉

+Pe4τ4〈u4〉+ 1

5
Pe4τ5L(u)〈ũ〉3 − 7

5
Pe4τ5〈u2|∇u|2〉

+4Pe2τ4L(u)〈ũ〉.
(5)

These formulas agree with those in [2], once adjusted for
coordinate-system. At large Pe, we find the skewness
at short times, determined solely by relative properties
of Ω and uniform initial conditions (non-zero σ): SG

σ ≡
M3/M3/2

2 = 〈u3〉/((σ/Pe τ)2 + 〈u2〉)3/2 [18], and SG =
limσ→0 SG

σ .

SG is independent of molecular diffusion. While there
have been allusions to such flow effects for the special
cases of channel/pipe flow [3, 19, 20], this concept has
not been systematically developed, nor alternative ge-
ometries considered. SG can be computed directly in the
channel and circular/elliptical pipes, since u profiles are
polynomials. In the channel, SG = −2

√
5/7, while for

elliptical pipes of any aspect ratio SG = 0, as 〈u3〉 = 0
by direct integration of [14]. Conversely, the value for
rectangular ducts ranges from channel’s value (λ → 0),
to positive ≈ 0.081169 for λ = 1.

Figure 4 shows full skewness evolution in ducts/ellipses
for varying λ, and the predicted first plateau values
SG . Remarkably, we observe at a “golden ratio” λG ≈
0.53335, SG

σ ≈ 0, and this duct behaves similarly to the
pipes. The inset shows a simulation with nonzero ini-
tial thickness. Inspection of SG

σ shows a scaling directly
connecting different (σ2,Pe) pairings producing identi-
cal dynamics by choosing larger Pe for larger σ2. The
inclusion of diffusion shows similar results for sufficiently
large Pe, as analysis of the exact formulae (3) and sim-
ulations demonstrate. Different nondimensionalizations
(e.g., fixed-flux) link λ into the Péclet number defini-
tion, and the left panel would change because of the com-
plicated (Pe, λ) landscape. Nonetheless, similar scaling
relations as just discussed provide one-to-one mappings
with the plots shown.

We remark that both pipes and ducts exhibit skew-
ness sign changes for some aspect ratios. The question of
sign-definiteness, as for the circular pipe (positive) and
the channel (negative), for other geometries is interest-
ing. The second extrema in all duct-simulations occur at
timescales t = ab/κ (τ = 1/λ) for large Péclet (the longer
timescale b2/κ presumably corresponds to the final in-
flection in skewness evolution). These second extrema
are not purely flow induced; the physical mechanism de-
rives asymmetry from a combination of tracer bending
by the flow coupled with local regions of increased dif-
fusive pumping, in a similar fashion to the heuristic ar-
guments presented in [19]. This intuition predicts nega-
tive partial skewness in the interior and positive partial
skewness near the boundaries. The duct and ellipse pro-
vide non-trivial interpolation between the limiting cases
of channel/circular pipes.

The timescale of the critical value corresponding to
geometric skewness can be predicted. Skewness criti-
cal points satisfy M2 Ṁ3 − 3

2
Ṁ2 M3 = 0. Short-time

asymptotics yield the root-finding problem c3τ
3+ c2τ

2−
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FIG. 4. (Color online.) Left: Full skewness evolution for ducts, λ = 0.01−1.0, Pe = 104, short-time asymptotics (solid, vertical
asymptote due to vanishing M2), Monte-Carlo simulations (symbols). Xs denote asymptotic prediction of minima. Center:
Duct SG vs. λ, predicting first plateaus. Inset: duct simulation, plug-f(x), σ ≈ 0.115. Right: ellipse full skewness, same
parameters.

Pe−2 [c1τ + c0] = 0, with coefficients

c0 = 36 〈u3〉, c1 = 30L(u) (〈ũ2〉 − 2〈ũ〉2),
c2 = 6L(u)

(

〈u3〉 〈ũ〉 − 〈u2〉 (〈ũ2〉 − 2〈ũ〉2)
)

,
c3 = L(u)2 〈ũ〉

(

〈ũ2〉 − 2〈ũ〉2
)

.
(6)

Perturbative root-finding produces τ∗ ∼
√

c0/c2Pe
−1 as

Pe → ∞. In the channel, this gives τ∗ ∼
√

5/2Pe−1.
Note c0/c2 is computationally observed to be positive for
λ ≤ λG and becomes negative past this (there may be no
extrema at this timescale). This quantitatively predicts
the observed first minima in the figures, and in physical
time this is consistent with the timescale t = a/U .

Conclusion. We have demonstrated new phenomena
in the skewness evolution of a diffusing passive scalar by
shear flows in various geometries. These include multi-
ple extrema depending nontrivially upon the aspect ratio
and Péclet number, as well as sign indefinite skewness
evolution, connecting the strictly negative skewness in
the channel with the strictly positive skewness in the cir-
cular pipe. In both geometries the partial skewness varies
with location, being always negative near the center and
always positive near the boundaries on short timescales.
New mathematical methods for computing the short-
time asymptotics in arbitrary cross-sectional domains
successfully predict the short-time evolution of the skew-
ness and kurtosis, predicting the skewness first plateau.
The existence of similar plateaus in the partial skewness
can be expected, possibly at different timescales. We
remark that while the short time asymptotics developed
here successfully predicts the first three partial moments,
critical cancellations prevent accurate prediction of the
partial skewness (hence, its plateaus) unless higher-order
terms are retained. Similar effects may be considered in
wall-driven as opposed to pressure-driven flows, as well
as more complex geometries. Surprisingly, the geomet-
ric skewness in wall-driven pipe flows is nonzero, while
the analogous scenario in the channel is zero. Pressure-
driven flows in more general geometries with SG 6= 0 can

be constructed by adding the real part of higher-order
complex polynomials Pn(y + ız) to the ellipse exact so-
lution with zero level-sets as boundary. The resulting
typically smooth geometries show that SG 6= 0 is unre-
lated to corners on the boundary.
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ũduct = U

∑∞

i,j=1 uij(λ)φij , and ũellipse = U 1
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