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Abstract

Quantum reactive scattering calculations for the hydrogen exchange reaction H + H2(v = 4,

j = 0) → H + H2(v
′, j′) and its isotopic analogues are reported for ultracold collision energies.

Due to the unique properties associated with ultracold collisions, it is shown that the geometric

phase effectively controls the reactivity. The rotationally resolved rate coefficients computed with

and without the geometric phase are shown to differ by up to four orders of magnitude. The effect

is also significant in the vibrationally resolved and total rate coefficients. The dynamical origin

of the effect is discussed and the large geometric phase effect reported here might be exploited to

control the reactivity through the application of external fields or by the selection of a particular

nuclear spin state.
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In the Born-Oppenheimer description of molecules the electronic Schrödinger equation is

solved to obtain an effective potential energy surface (PES) which is then used in the solution

of the nuclear motion Schrödinger equation. The electronic PES often becomes degenerate

with an excited electronic state resulting in a conical intersection (CI). As noted long ago

by Longuet-Higgins[1] and Herzberg and Longuet-Higgins,[2] the electronic wave functions

associated with a CI change sign for any nuclear motion pathway which encircles the CI

(i.e., they are double-valued). The electronic sign change implies that a corresponding sign

change must also occur on the nuclear motion wave function. Mead and Truhlar[3] showed

that this can be accomplished by including an effective vector potential in the nuclear motion

Hamiltonian. Mead[4] originally referred to this effect as the “Molecular Aharonov-Bohm”

effect but it is now commonly referred to as the “geometric phase” or “Berry’s phase”

effect.[5, 6]

The most studied of all chemical reactions is the hydrogen exchange reaction H + H2

→ H + H2 and its isotopic analogues H + HD ↔ D + H2 and D + HD ↔ H + D2.[7–

9] The H3 system exhibits a CI between the ground and first excited electronic states for

equilateral triangle (i.e., D3h) geometries.[10] As first predicted by Mead, the GP alters the

relative sign between the reactive and non-reactive scattering amplitudes for the H + H2

reaction which significantly alters the angular dependence of the differential cross sections

(DCSs).[11, 12] Unfortunately, state-resolved experiments for H + H2 are very difficult in

practice and Mead’s predictions have not yet been verified. Though the isotopic variants

are more accessible experimentally, theoretical calculations showed negligible GP effects for

a wide range of collision energies.[13–21] Some relatively small rapidly varying oscillations

in the DCS due to the GP have been seen in the theoretical DCSs at energies below that of

the CI.[17, 22, 23] At energies above the CI, large GP effects on the DCS’s were predicted

which give rise to broader bi-modal features.[22–24] However, GP effects remained elusive in

the integral cross sections or reaction rate coefficients at any energy. A recent experimental

attempt to measure the GP oscillations in the DCSs for the H + HD → H + HD reaction

at energies below the CI was unsuccessful.[25]

Until recently,[26] all previous theoretical predictions of GP effects on chemical reactivity

and experimental attempts at its detection have been done at thermal energies. Recent

experimental progress in the cooling and trapping of molecules presents a novel energy

regime at sub-Kelvin temperatures to explore GP effects in chemical reactions.[27, 28] In the
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zero-temperature limit where only s-wave contributes, the reaction rate coefficients obey the

well known Bethe-Wigner threshold laws and approach finite measurable values for exoergic

processes.[29–33] In this regime, scattering becomes isotropic and for reactions that proceed

over a potential well, the scattering phase shifts approach an integral multiple of π. In

this Letter, it is shown that these unique properties of ultracold reactions lead to maximal

possible interference between the different scattering pathways around a conical intersection.

The maximal interference effects are shown to occur in the fundamental hydrogen exchange

reaction which results in very large GP effects, essentially turning on or off the reactivity.

The effective quantization of the scattering phase shifts is a general property of ultracold

collisions for interaction potentials which support bound states[26, 34] as well as those which

do not (as demonstrated in this Letter for the H3 system). In the latter case, suitable

vibrational excitation of the reactant diatomic molecule is required which results in an

effective reaction pathway (along the vibrational adiabat) that is barrierless[35] and exhibits

a potential well.[9, 36–38]

Figure 1 plots a 2D slice of the 3D ground state H3 electronic PES[39] and reaction

pathways for the D + HD → D + HD (panel a) and D + HD → H + D2 (panel b) reactions.

Hyperspherical coordinates are used which have the advantage of showing all arrangement

channels simultaneously as well as the prominent CI located near the center of the plot.[40]

Figure 1 corresponds to a stereographic projection of the upper half of the hypersphere with

a fixed hyperradius of ρ = 3.75 ao. The zero of energy is the bottom of the asymptotic H

+ D2 potential well. The contour lines are separated by 2, 900K except for the two closely

spaced contours at 4, 640K and 5, 220K. For clarity, a cut-plane is used at 33, 640K so that

the extremely repulsive regions for each channel are not included. The energy of the CI in

Fig. 1 is 37, 700K and the PES for the excited electronic state is not shown.

The two panels in Figure 1 depict the interference pathways which can lead to significant

GP effects for each reaction. In general the total scattering amplitude can be decomposed

into contributions from each pathway labeled by the 1, 2, and 3 in panels (a) and (b).[11, 18–

20] For the inelastic scattering in 1 (a), pathway #1 (black) corresponds to a non-reactive

process and pathways #2 and #3 (red) correspond to an exchange process where the two

identical D nuclei in each HD channel are exchanged. For the reactive scattering in 1

(b), pathway #1 (black) corresponds to a direct reaction process and pathway #2 (red)

corresponds to a looping reaction process. For the D-atom exchange in 1 (a), it has been
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FIG. 1. (color online) A 2D slice of the 3D Born-Oppenheimer PES for the HD2 system is plotted

at a fixed hyperradius ρ = 3.75 ao. The different scattering pathways around the CI are indicated,

panel (a) for D + HD → D + HD, and panel (b) for D + HD → H + D2. For clarity, pathways

for only one of the symmetric HD channels is depicted.

shown that, due to the direct collinear nature of the reaction, contributions from pathway

#3 (thin red curve) are negligible even for high collision energies approaching that of the

CI.[13–18] Thus, the total scattering amplitude which does not include the GP can be

written as f̃NGP = (1/
√
2)(f̃1 + f̃2) where NGP denotes “No Geometric Phase” and f̃1 and

f̃2 are the scattering amplitudes for pathways #1 and #2 in Fig. 1 (a).[11, 18–20] The GP

alters the sign on the scattering amplitude for pathway #2 across the branch cut (black

dashed curve in Fig. 1). Thus, the total scattering amplitude which includes the GP is

given by f̃GP = (1/
√
2)(f̃1− f̃2) where GP denotes “with Geometric Phase”.[11, 18–20] The

same expressions hold for the NGP and GP scattering amplitudes in Fig. 1 (b).[18–20] The
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encirclement of the CI by the combined pathways #1 and #2 is obvious in Fig. 1 (b) but

not so obvious in Fig. 1 (a). Pathway #2 in Fig. 1 (a) encircles the CI through “symmetric

encirclement” (i.e., via the symmetrization of the wave function with respect to permutation

of the identical D nuclei).[3, 11, 18–20, 41]

The cross sections and rate coefficients are computed from the square modulus of the total

scattering amplitude ||f̃ || = (1/2) (f 2

1
+ f 2

2
± 2 f1 f2 cos∆) where the + and − denote NGP

and GP, respectively. The complex scattering amplitudes are expressed as f̃1 = f1 exp(i δ1),

f̃2 = f2 exp(i δ2) and the phase difference ∆ = δ2 − δ1. If the square modulus of the

scattering amplitude for one of the pathways is much larger than the other: f 2

1
>> f 2

2
or

f 2
2 >> f 2

1 , then the square modulus of the total scattering amplitude is given by ||f̃ || ≈ f 2
1 /2

or ||f̃ || ≈ f 2

2
/2, respectively, and the GP effect is negligible. However, when the squared

moduli are similar f 2

1 ≈ f 2

2 , then ||f̃ || ≈ f 2 (1± cos∆) where f = f1 ≈ f2. Thus, depending

upon the sign and magnitude of cos∆, the reactivity can be dramatically enhanced or

suppressed. The maximum interference occurs when | cos∆| = 1. If ± cos∆ = +1 then

maximum constructive interference occurs and ||f̃ || ≈ 2 f 2, whereas for ± cos∆ = −1,

maximum destructive interference occurs and ||f̃ || ≈ 0. That is, if | cos∆| ≈ 1 then the

reactivity can be turned on or off by the sign of the interference term. Since the GP alters

the sign of the interference term, the GP effectively controls the reactivity.

The quantum reactive scattering calculations for the H3 system were done using a numer-

ically exact time-independent coupled-channel method based on hyperspherical coordinates

and the GP effect is included using the vector potential approach.[16, 34, 40, 42–44] We note

that the GP effect is accounted for if non-adiabatic couplings to excited electronic states

are included. However, this would require a 2× 2 diabatic matrix representation[45] of the

interaction potential with an associated 23 = 8 fold increase in computational cost. The

computed scattering (S) matrices include all open reactant and product diatomic vibrational

and rotational states on a grid consisting of 71 collision energies spanning the range from

1µK to 100K relative to asymptotic energy of HD(v = 4, j = 0) for the H + HD and D +

HD reactions, and H2(v = 4, j = 0) for H + H2. The 21 collision energies below 0.1K are

logarithmically spaced while the remaining 50 higher-lying energies are uniformly spaced.

For the highly excited reactant vibrational states, the reaction becomes effectively barri-

erless and exhibits significant reactivity at ultracold collision energies.[35] The asymptotic

energies for HD(v = 4, j = 0) and H2(v = 4, j = 0) are 22, 109K and 25, 078K relative to
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the bottom of the asymptotic diatomic potential wells, respectively. The scattering calcula-

tions were carried out using two accurate ab initio electronic PESs for the H3 system: the

BKMP2[39] and the newer one by Mielke, et al.[46] which includes significant improvements

to the long-range anisotropic behavior.
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FIG. 2. (color online) The total reaction rate coefficient for the H + H2(v = 4, j = 0) → H + H2

(para-para) reaction is plotted as a function of collision energy. The solid curves include all values

of total angular momentum J = 0 − 2. The dashed and long-short dashed curves include only

J = 0 and were done using the BKMP2 and Mielke PESs, respectively. The red curves include the

geometric phase (GP) while the black curves do not (NGP).

Figure 2 plots the total reaction rate coefficient for H + H2(v = 4, j = 0) → H + H2

summed over all product vibrational and even rotational states (i.e., the para-para transi-

tions). The results which include (do not include) the GP are plotted in red (black). The

solid curves include all values of total angular momentum (i.e., orbital l plus rotational j)

J = 0 − 2 and the dashed and long-short dashed curves are for J = 0 only (for which

l = j = 0). The rate coefficients for each value of J are well converged over the entire energy

range. The total rate coefficient is well converged with respect to the sum over J = 0 − 2

up to about 2K.[34] The dashed and long-short dashed curves compare the results based

on the BKMP2 and Mielke PES, respectively. Both PESs give similar results and predict

that the GP enhances the ultracold reactivity by a full order of magnitude. Figure 3 plots

several representative rate coefficients for the D + HD(v = 4, j = 0) → D + HD(v′, j′)

reaction using the BKMP2 PES. The rate coefficients are computed for even exchange sym-

metry (i.e., the nuclear motion wave function is symmetric with respect to permutation of
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FIG. 3. (color online) Reaction rate coefficients for the D + HD(v = 4, j = 0) → D + HD(v′,

j′) reaction are plotted as a function of collision energy: (a) v′ = 0, j′ = 11, (b) v′ = 3, j′ = 5,

(c) v′ = 1, and (d) total. The results are for even exchange symmetry, include all values of total

angular momentum J = 0 − 2, and are based on the BKMP2 PES. The red curves include the

geometric phase (GP) while the black curves do not (NGP).

the identical D nuclei) and include all values of total angular momentum J = 0 − 2. The

rotationally resolved rate coefficient for v′ = 0, j′ = 11 shows that the geometric phase

reduces the reactivity by over four orders of magnitude. The rate coefficient for v′ = 3,

j′ = 5 and the vibrationally resolved rate coefficient for v′ = 1 are reduced by nearly two

orders of magnitude when the GP is included. The total rate coefficient which includes the

GP is reduced by a factor of 50. The rate coefficients for odd exchange symmetry are similar

in magnitude except that the GP increases the reactivity in this case.[34] When both the

symmetric and antisymmetric nuclear spin states of D2 are present, the scattering results

must be summed over both even and odd exchange symmetries including the appropriate

nuclear spin statistical weights 2/3 and 1/3, respectively. The GP effect is reduced but

remains significant (see Table I and Ref. 34). We have also verified large GP effects for

other reactant vibrational states, in particular v = 3 and v = 5. A notable feature in Figs.

2 and 3 is the bump which occurs near 1K. This feature is most likely a shape resonance

due to the centrifugal barrier for J > 0.[31, 34]

Table I lists a representative sample of the ultracold (1µK) reaction rate coefficients com-
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puted for the H3 system both with and without the geometric phase and different exchange

symmetries. Most notable are the very large GP effects seen in the rotationally resolved

rate coefficients for the D + HD → D + HD reaction for each exchange symmetry. These

differences persist, albeit smaller when summed over both exchange symmetries. The GP

effects for the H + HD → H + HD reaction are overall smaller than those for the D +

HD reaction. For the H + H2 → H + H2 para-para reaction, the results have already been

summed over the appropriate nuclear spin states. Large differences (≈ 10x) between the

GP and NGP rate coefficients are observed even when summed over all v′ and j′. The total

rate coefficients summed over all v′ and j′ using the PES of Mielke et al. are tabulated in

the last column. They are very similar at the state resolved level as well but the overall

reactivity is slightly reduced (see Fig. 2). For the D + HD → H + D2 and H + HD → D +

H2 reactions (not tabulated), the GP and NGP rate coefficients are nearly identical even at

the rotationally resolved and single exchange symmetry level. The same applies to the H +

H2 para-ortho reaction (not tabulated). The lack of GP effects for these ultracold reactions

is due to the direct collinear nature of the reaction which results in a tiny contribution from

the scattering amplitude corresponding to looping pathway in Fig. 1 (b).

For ultracold collisions of H or D with a high vibrationally excited HD or H2 diatomic

molecule, leading to vibrational quenching, the reaction pathway is effectively barrierless

with an attractive potential well.[9, 35–38] Thus, each scattering pathway in Fig. 1 can be

represented by a simple 1D spherical well model. For this 1D model, the scattering phase

shifts are known analytically and in the zero energy limit they become effectively quan-

tized (i.e., they approach nπ where n denotes the number of bound states in 1D spherical

well).[26, 34] If the number of bound states in the two different 1D spherical well potentials

corresponding to the two reaction pathways in Fig. 1(a) differ by an even (odd) number,

then cos∆ = 1 (cos∆ = −1). Maximum constructive (destructive) interference will occur

between the two scattering amplitudes contributing to f̃NGP, and the opposite interference

behavior will occur for f̃GP. Thus, the unusually large GP effects reported here originate

from the isotropic (s-wave) scattering and the effective quantization of the scattering phase

shift which results in | cos∆| ≈ 1.[26, 34] The mechanism is general and is expected to hold

for many molecules which exhibit CIs and for which the PES and/or the choice of reactant

and product states allows for a favorable encirclement.[26]

We emphasize that the interference mechanism reported here is a general property of
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TABLE I. Ultracold (1µK) reaction rate coefficients for the X + HD(v = 4, j = 0) → X + HD(v′,

j′) with X=D and H, and the H + H2(v = 4, j = 0) → H + H2(v
′, j′ even) reactions. The “evn”

and “odd” denote exchange symmetry and the “GP” and “NGP” denote the results computed with

and without the geometric phase, respectively. The “(evn) + (odd)” denote the summed results

over even and odd exchange symmetries. All rate coefficients include the appropriate nuclear spin

statistical weights and are in cm3/s. Data correspond to the BKMP2 PES, except for the last

column which is obtained on the PES of Mielke et al.

Reaction v′=0,j′=11 v′=2,
∑

j′ Total Mielke PES

D + HD(evn) GP 1.01(-18) 1.51(-15) 1.05(-14) 6.64(-15)

NGP 1.13(-14) 1.52(-13) 4.94(-13) 2.51(-13)

D + HD(odd) GP 5.48(-15) 7.52(-14) 2.44(-13) 1.25(-13)

NGP 1.90(-19) 7.42(-16) 4.99(-15) 2.97(-15)

(evn) + (odd) GP 5.48(-15) 7.67(-14) 2.54(-13) 1.32(-13)

NGP 1.13(-14) 1.53(-13) 4.98(-13) 2.54(-13)

v′=0,j′=2 v′=0,
∑

j′

H + HD(evn) GP 1.60(-17) 1.58(-14) 9.87(-14)

NGP 1.22(-14) 8.80(-14) 3.15(-13)

H + HD(odd) GP 3.79(-14) 2.71(-13) 9.35(-13)

NGP 1.95(-17) 4.34(-14) 2.85(-13)

(evn) + (odd) GP 3.79(-14) 2.87(-13) 1.03(-12)

NGP 1.22(-14) 1.31(-13) 6.00(-13)

v′=3,j′=4 v′=3,
∑

j′

H + H2 GP 4.32(-11) 8.39(-12) 2.48(-11) 2.16(-11)

NGP 2.16(-13) 5.41(-13) 2.02(-12) 1.76(-12)

ultracold collisions and will also occur in molecules without CIs or GP effects. In general,

large interference effects can be expected for barrierless reaction paths which proceed over a

potential well (due to the PES or vibrational excitation) and include contributions from two

interfering pathways (such as reactive and non-reactive). Experimentally the interference

(and hence reactivity) might be controlled by the selection of a specific nuclear spin state

or by the application of external electric or magnetic fields to (1) alter the relative number
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of bound states in the effective potential wells along each interfering pathway, or (2) alter

the relative magnitude of the two interfering scattering amplitudes.[26, 47]
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