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Abstract

We theoretically demonstrate the possibility to generate both trains and isolated attosecond

pulses with high ellipticity in a practical experimental setup. The scheme uses circularly polarized,

counter-rotating two-color driving pulses carried at the fundamental and its second harmonic.

Using a model Ne atom, we numerically show that highly elliptic attosecond pulses are generated

already at the single-atom level. Isolated pulses are produced by using few-cycle drivers with

controlled time-delay between them.
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High Harmonic Generation (HHG) in atoms and molecules is a highly nonlinear process

which up-converts intense infrared laser field into the extreme ultraviolet (XUV) and soft

X-ray radiation [1–4]. The emitted light can be used to track quantum dynamics underlying

the nonlinear response [5–8], or as a table-top source of bright, coherent, ultrashort pulses

[9–12].

In the latter case, generation of circular or highly elliptic high harmonics and/or attosec-

ond XUV pulses is very important. Such pulses would find numerous applications, e.g. in

chiral-sensitive light-matter interactions such as chiral recognition via photoelectron circular

dichroism (PECD) (see e.g. [13–15]), study of ultrafast chiral-specific dynamics in molecules

(e.g. [16, 17]), and X-ray Magnetic Circular Dichroism (XMCD) spectroscopy (e.g. [18–24]),

including time-resolved imaging of magnetic structures (e.g. [18–22]). Table-top sources of

sub-100 fs, or even attosecond, chiral pulses would be a real breakthrough for laboratory-

scale ultrafast studies. Not surprisingly, search for schemes enabling the generation of short,

coherent XUV pulses with tunable polarization is a very active area of research, see e.g.

[16, 25–39].

Importantly, the control over polarization is desired not only for individual harmonics,

where it has just been demonstrated [35, 36], but also for individual attosecond pulses,

both isolated and in a train, where robust and practical scheme is still lacking. We show a

way to solve this problem, proposing a practical scheme for the generation of highly elliptic

attosecond pulses, both single and in a train.

An elegant solution to generating individual high harmonics with circular polarization

has been found by W. Becker and coworkers [28, 29, 31, 32] see also [40] for strongly related

ideas. It relies on combining circularly polarized fundamental field with a counter-rotating

second harmonic. The resulting electric field peaks three times within one cycle of the

fundamental, producing three ionization bursts. The electron promoted to the continuum

near the peak of the instantaneous field can successfully revisit the parent ion within about

half-cycle, emitting an attosecond radiation burst [28, 29].

This approach has now been very successfully used in [35, 36], demonstrating generation

of bright, phase matched high harmonic radiation. Importantly, tuning the ellipticity of

one of the fields allows one to tune the ellipticity of the generated harmonics from linear to

circular [35]. While the theoretical interpretation of this control is a an interesting question

on its own right [33, 35], the approach is very promising. However, until now the possibility of
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extending this scheme from controlling the polarization of individual harmonics to controlling

the polarization of isolated attosecond pulses looked far from straightforward.

Indeed, the driving field dictates that the direction of electron return rotates by 1200 three

times per cycle. Consequently, recombination with an s-state yields three linearly polarized

attosecond bursts per cycle, with polarization rotating by 1200 from burst to burst [29].

This can also be seen in the frequency domain. The harmonic lines are at energies (n +

1)ω+2nω = (3n+1)ω and nω+(n+1)2ω = (3n+2)ω. In centrally symmetric medium, and

for circularly polarized driving fields, the selection rules dictate that the Ω = (3n+ 1)ω line

has the same helicity as the fundamental while the Ω = (3n+ 2)ω line has the same helicity

as the second harmonic, (Ω = nω + 2nω = 3nω is parity forbidden) [31, 32, 35, 36, 41, 42].

Thus, the harmonics have alternating helicity. Adding harmonics of alternating helicity

with equal intensity yields an attosecond pulse train where each subsequent pulse has linear

polarization rotated by 1200, in concert with the time domain picture.

Suppressing every second allowed harmonic line, e.g. Ω(3n+2) = (3n + 2)ω, would solve

the problem of generating individual attosecond pulses with circular polarization. O. Kfir

et. al. [36] suggested that such suppression can be achieved by optimizing the phase-

matching conditions in gas-filled hollow fiber and reported substantial suppression of the

lines Ω(3n+2) = (3n+ 2)ω.

Here, we show that relative intensities of the counter-rotating harmonic lines strongly

depend on the orbital momentum of the initial state. For an initial p-state (as for a Neon,

Argon, or Krypton gas), the harmonics co-rotating with the fundamental field can be much

stronger then those co-rotating with the second harmonic. The effect is found with the

contribution of both degenerate sub-levels, p+ and p−, included in the calculation. As

a result, circularly polarized attosecond pulses are generated already at the microscopic,

single-atom level, see Fig. 1. Additional help from phase-matching is a bonus, but not

necessary.

Second, we extend the scheme to generation of isolated attosecond pulses. We show that

when the counter-rotating driving pulses become relatively short, e.g. 7-8 fs for the 800

nm driver and its second harmonic, one can generate an isolated attosecond pulse, or a

controllable train with 2 or 3 pulses, by tuning the time delay between the fundamental and

the second harmonic.

To demonstrate these effects, we numerically solve the time dependent Schröedinger equa-
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tion (TDSE) for a 2D Neon-like model atom, for counter-clockwise (+) polarized fundamen-

tal and clockwise (–) polarized second harmonic. We show that the harmonics generated

from orbitals with m= ±1 differ from those generated from s orbitals in two important

ways. Firstly, the height of the adjacent left- and right- circularly polarized harmonics can

differ by an order of magnitude, with m= 1 state favouring harmonics co-rotating with fun-

damental and m= −1 state favouring harmonics co-rotating with 2ω field. Secondly, once

the two contributions are added coherently, + polarization continues to dominate in a broad

spectral range, leading to highly elliptic circularly polarized attosecond pulse train already

at the single-atom level. Our findings are in accord with [36] (see Ne spectra in Fig. 3 of

[36]), where such disparity was attributed to phase matching.

We solve the (TDSE) in the length gauge (atomic units are used throughout unless stated

otherwise):

ı
∂

∂t
Φ(t, r) =

[
T̂ + V (r) + r · E(t)

]
Φ(t, r). (1)

The 2D model potential is taken from [43]

V (r) = − Z(r)√
r2 + a

(2)

where Z(r) = 1 + 9 exp(−r2) and a = 2.88172 to obtain the ionization potential of Ne atom

Ip = 0.793 a.u. for the 2p orbitals. The 1s state has an energy E1s = −2.952 a.u. and the

2s energy is E2s = −0.217 a.u.. For reference calculations we use 1s as the initial state but

keep the same ionization potential taking Z(r) = 1 and a = 0.1195. The laser electric field

is

E(t) =Eir · f(t) · (cos[ωt] + cos[2ωt])x̂

+Eir · f(t) · (sin[ωt]− sin[2ωt])ŷ (3)

where f(t) is the trapezoidal envelope with 2 cycle rising and falling edges and 5 cycle

plateau (in units of fundamental). The ω-field rotates counter-clockwise (+). The second

harmonic rotates clockwise (–).

The TDSE is propagated on a 2D Cartesian grid using Taylor-series propagator with

expansion up to 8th order [44]. A complex absorbing potential

Vc(x) = η · (x− x0)n (4)

with η = 5 × 10−4 and n = 3 is used to avoid non-physical reflections from the boundary.

Other simulation parameters are summarized in Table I.
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laser frequency ω 0.05 (λ = 911 nm)

laser electric field Eir 0.05 (I= 0.88 · 1014 W/cm2)

grid step size dr 0.2

time step size dt 0.005

propagation time T 1250 (30.2 fs)

maximal grid extent Xmax ±60

absorbing boundary x0 ±36

TABLE I. Parameters of the calculations in atomic units unless stated otherwise.

Convergence was tested with respect to the absorbing potential, the time step and the

spatial grid. Note that HHG in bicircular fields is dominated by very short trajectories [28].

The initial wavefunctions were obtained using imaginary time propagation filtering out

the ground state wavefunction to obtain px and py orbitals. The p± states are defined as

p± =px ± i py. The laser intensity was kept such as not to exceed 5% ionization and to

avoid strong shifts and mixing of the degenerate atomic orbitals described in [43]. The

spectra were obtained by performing the Fourier transform of the time-dependent dipole

acceleration, evaluated at every 0.5 a.u.

The results are robust with the variation of the pulse length, the shape and length of

its rising and falling edges, laser intensity, and wavelength: we performed calculations from

λ = 600 nm up to λ = 1200 nm.

Fig 1(a) shows reference spectra obtained for 1s initial state of the model potential with

Ip of Neon. It agrees well with previously published results [28, 32, 35, 36], the harmonics

come in pairs (n+1)ω+n2ω = (3n+1)ω and nω+(n+1)2ω = (3n+2)ω of similar heights.

The left harmonic in the pair has the same polarization as the fundamental field, the right

harmonic follows the 2ω driver. The harmonics 3nω are parity forbidden.

Figures 1b and 1c show spectra for the p+ and p− initial states. For the p+ initial

state, the harmonics that have the same polarization as the driving IR field are preferred.

For the p− initial state, the harmonics with the same polarization as the 2ω driver are

stronger. There are additional spectral variations in the plateau region, different for p+ and

p− orbitals. There is also a qualitative difference between the below-threshold (<Ip) and
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above-threshold (>Ip) harmonics, showing that the evolution of the photoelectron in the

continuum is critical for the observed propensity in the harmonic strengths.

Figure 1d shows the spectra obtained from adding the contributions from the p+ and p−

orbitals coherently, as required. In the plateau region, harmonics with the same polarization

as the driving IR field dominate over those with opposite polarization.
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FIG. 1. Spectra for (a) 1s, (b) 2p+, (c) 2p− initial states and (d) equal mixture of 2p+ and 2p−

states. Colors mark harmonics co-rotating (red) and counter-rotating (blue) with the ω field.
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FIG. 2. Time-resolved XUV emission intensity and ellipticity from 1s (a and b) and 2p (c and d)

orbitals. Colour in (b) and (d) indicates the ellipticity of the spectral components in the regions

where the amplitude of the spectrogram is significant. The horizontal dashed lines mark the Ip.

The sub-cycle dynamics of the emission process was analyzed using the Gabor Transform

(GT) [45] of the time-dependent acceleration dipoles a(t):

GT [Ω, t0] =
1

2π

∫
dta(t)e−iΩte−(t−t0)2/(2T 2) (5)

where we have chosen T = 1/3ω. The reference spectrograms for the 1s initial state in

Figures 2a and 2b show the time-dependent intensity (a) and ellipticity (b) for time-resolved

spectra, in the regions where spectral amplitudes are significant. As expected, there are 3

radiation bursts per ω cycle with linear polarization, as predicted in [28, 29, 32].

Figures 2c and 2d show the same spectrogram for the 2p state, i.e. the coherent su-

perposition of the radiation from p+ and p− states. Although the signal strength in the

spectrogram is similar to the s orbital, the ellipticity of the emitted radiation is very differ-

ent. Three distinct regions can be identified: (i) below threshold region, where the ellipticity

is mostly negative; (ii) the middle region, where the ellipticity is high and positive and (iii)

near cutoff region where the emitted radiation is mostly linear. The energy region (ii) of the

spectrogram coincides with the spectral window in figure 1d where the difference between

clockwise and counter-clockwise harmonics is the greatest.
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FIG. 3. Time-resolved XUV emission from a 2p orbital, for time-delayed 4 fs full width half

maximum 800 nm and 400 nm pulses. (a) Spectral intensity and (b) time-dependent ellipticity

for perfect overlap of the two-pulses. (c) Spectral intensity and (d) time-dependent ellipticity for

the two-pulse delay of 2.6 fs. Spectra in (c) is multiplied by a factor of 2 to enhance the contrast.

Colour in (b) and (d) indicates the ellipticity of the spectral components in the regions where the

amplitude of the spectrogram is significant. The horizontal dashed lines mark the Ip.

Application of bi-circular fields is naturally extended from the generation of an attosecond

pulse train to the generation of an isolated attosecond pulse, using short driving pulses and

changing the time-delay between them. Indeed, the harmonic emission driven by circular

fields is only possible when the two counter-rotating circular pulses overlap. Given high

nonlinearity of the overall process (including ionization), it will be limited to the temporal

window where the two driving pulses overlap with nearly equal and high intensity. This idea

is tested in Fig. 3, which shows time-resolved spectrograms and ellipticity of the emitted

light for λ = 800 nm and 400 nm counter-rotating drivers with full width half maximum

duration of 4 fs and sin2 envelope with I= 1.7 · 1014 W/cm2 peak intensity, for two time

delays. In case of perfect overlap, 3 attosecond pulses are generated. Delaying the low-

frequency pulse by 2.6 fs (full period of 800 nm field) yields two attosecond pulses with

strong ellipticity, that are well separated in energy. An isolated pulse would be obtained
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by filtering the lower or higher energy pulse. With shorter driving pulses, a single isolated

attosecond pulse will be generated.

What is the physical origin of the HHG sensitivity to the angular momentum of the

initial state? The energy and angular momenta that the electron accumulates from the

laser field while propagating in the continuum is transferred to the harmonic photon upon

recombination. The matrix elements associated with recombination are the complex con-

jugate of the photoionization matrix elements. In 2D one photon ionization with the field

co-rotating with the initial state is much more likely than with counter-rotating field. This

is a direct analogue of Fano-Bethe propensity rules [46] and is also the case for Rydberg

states co-rotating and counter-rotating with the field [47, 48].

Consider the harmonic spectra from p+ orbital. The right circularly polarized harmonics

result from the (n + 1)ω + n2ω pathway. The recombination step is conjugated to photo-

ionization from p+ state with a co-rotating field, favoured by the propensity rules. The

left-circularly polarized harmonics result from the nω + (n + 1)2ω pathway. The recombi-

nation step is conjugated to photo-ionization from p+ state with a counter-rotating field,

dis-favoured by the propensity rules. This explains the relative heights of the harmonic pairs

for the p+ initial state. The same analysis explains why harmonics co-rotating with 2ω field

are preferred for the p− initial state.

But why is p+ dominant over p−? The answer lies in the stronger effect of the lower-

frequency (counter-clockwise) field on the continuum electron, which leads to higher popu-

lation of the continuum states with positive angular momentum than with the negative one.

The more probable recombination from such states is to the p+ state, by emitting light with

counter-clockwise polarization.

The carrier-envelope phase (CEP) stabilization controls the orientation of the polarization

ellipse of the attosecond pulse, but not the pulse. Indeed, as long as the relative phase

between the two pulses, ω and 2ω, is locked, changing the CEP will rotate the trefoil

pattern of the driving field and thus the polarization ellipse of the attosecond pulse but

will not alter its high ellipticity. This property, in combination with the possibility of using

relatively routine durations of the two driving pulses, makes the scheme extremely attractive

for practical implementation.

Finally, we comment on the difference between the 2D model presented here and a 3D

system. Since the harmonic dipole for the m=0 orbital is negligible, the only expected
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difference is the additional spreading of the continuum electron wavepacket in the direction

perpendicular of the place of polarization of the driving field. Such spreading is identical for

both p+ and p− orbitals and thus will not change the relative intensity of the corresponding

harmonics. Consequently, we expect our results stand in the full 3D case. In this context,

we would also like to bring the readers attention to the recent 3D SFA calculations of HHG

for Ne atom in two color bi-circular field [49] where similar results the intensity of left and

right circularly polarized harmonics from m= ±1 orbitals have also been found.
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