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The notion of (non)contextuality pertains to sets of properties measured one subset (context)
at a time. We extend this notion to include so-called inconsistently connected systems, in which
the measurements of a given property in different contexts may have different distributions, due to
contextual biases in experimental design or physical interactions (signaling): a system of measure-
ments has a maximally noncontextual description if they can be imposed a joint distribution on
in which the measurements of any one property in different contexts are equal to each other with
the maximal probability allowed by their different distributions. We derive necessary and sufficient
conditions for the existence of such a description in a broad class of systems including Klyachko-
Can-Binicioğlu-Shumvosky-type (KCBS), EPR-Bell-type, and Leggett-Garg-type systems. Because
these conditions allow for inconsistent connectedness, they are applicable to real experiments. We il-
lustrate this by analyzing an experiment by Lapkiewicz and colleagues aimed at testing contextuality
in a KCBS-type system.

Keywords: CHSH inequalities; contextuality; criterion of contextuality; Klyachko-Can-
Binicioğlu-Shumvosky inequalities; Leggett-Garg inequalities; measurement bias; measurement er-
rors; probabilistic couplings; signaling.

The notion of (non)contextuality in Quantum Mechanics
(QM) relates the outcome of a measurement of a physical
property q to the choice of properties q′, q′′, . . . co-measured
with q [1]. The set of co-measured properties q, q′, q′′, . . .
forms a measurement context for each of its members. The
traditional understanding of a contextual QM system is
that if the measurement of each property q in it is repre-
sented by a random variable Rq, then the random variables
representing all properties in the system do not have a joint
distribution.

We use here a different formulation, which, although for-
mally equivalent, lends itself to more productive develop-
ment [5–10]. We label all measurements contextually: this
means that a property q is represented by different random
variables Rcq depending on the context c = {q, q′, q′′, . . .}.
We say that the system has a noncontextual description if
there exists a joint distribution of these random variables in
which any two of them, Rc1q and Rc2q , representing the same
property q in different contexts, are equal with probability
1. If no such description exists we say that the system is
contextual. Note that the existence of a joint distribution of
several random variables is equivalent to the possibility of
presenting them as functions of a single, “hidden” variable
λ [2, 3, 5, 11].

This formulation applies to systems in which the random
variables Rc1q , Rc2q , . . . representing a given property in dif-
ferent contexts always have the same distribution. We call
such systems consistently connected, because we call the set
of all such variables Rc1q , Rc2q , . . . for a given q a connection.
If the properties forming any given context are space-time
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separated, consistent connectedness coincides with the no-
signaling condition [12]. The central aim of this paper is
to extend the notion of contextuality to the cases of incon-
sistent connectedness, where the measurements of a given
property may have different distributions in different con-
texts. This may happen due to a contextually biased mea-
surement design or due to physical influences exerted on
Rcq by elements of context c other than q.

The criterion of (necessary and sufficient conditions for)
contextuality we derive below is formulated for inconsis-
tently connected systems, treating consistent connected-
ness as a special case. This makes it applicable to real ex-
perimental data. For example, the experiment in Ref. [20]
testing the Klyachko-Can-Binicioğlu-Shumvosky (KCBS)
inequality [21] exhibits inconsistent connectedness, neces-
sitating a sophisticated work-around to establish contextu-
ality (see Refs. [22, 23]). Below, we apply our extended
notion to the same data to establish contextuality directly,
with no work-arounds. Another example is Leggett-Garg
(LG) systems [17], where our approach allows for the pos-
sibility that later measurements may be affected by pre-
vious settings (“signaling in time,” [18, 19]). Finally, in
EPR-Bell-type systems [13, 14] our approach allows for the
possibility that Alice’s measurements are affected by Bob’s
settings [15] when they are time-like separated; and even
with space-like separation, the same effect can be caused
by systematic errors [16].
Earlier treatments.— In the Kochen-Specker theorem [1]

or its variants [24, 25], contexts are chosen so that each
property enters in more than one context, and in each con-
text, according to QM, one and only one of the measure-
ments has a nonzero value. The proof of contextuality,
using our language, consists in showing that the variables
Rcq cannot be jointly assigned values consistent with this
constraint so that all the variables representing the same
property q are assigned the same value. An experimental
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test of contextuality here consists in simply showing that
the observables it specifies can be measured in the contexts
it specifies, and that the QM constraint in question is sat-
isfied.

There has been recent work translating the value as-
signment proofs into probabilistic inequalities (sometimes
called Kochen-Specker inequalities) giving necessary condi-
tions for noncontextuality [5, 26]. Inequalities that do not
use value-assignment restrictions but only the assumption
of noncontextuality are known as noncontextuality inequal-
ities [21, 27, 28]. Bell inequalities [3, 13, 14, 29, 30] and LG
inequalities [2, 17] are also established through noncontex-
tuality [31], motivated by specific physical considerations
(locality and noninvasive measurement, resp.).

An extension of the notion of (non)contextuality that
allows for inconsistent connectedness was suggested in
Refs. [5, 32]. However, the error probability proposed in
those papers as a measure of context-dependent change in
a random variable cannot be measured experimentally. The
suggestion in both Refs. [5, 32] is to estimate the accuracy of
the measurement and from that argue for a particular value
of the error probability. For example, Ref. [32] uses the
quantum description of the system for the estimate (quan-
tum tomography), but there is no clear reason why or how
the quantum error model would be related to that of the
proposed noncontextual description. A noncontextuality
test should not mix the two descriptions, as it attempts to
show their fundamental differences.

In this paper we generalize the definition of contextuality
in a different manner, to allow for inconsistent connected-
ness while only using directly measurable quantities. We
derive a criterion of (non)contextuality for a broad class
of systems that includes as special cases the systems in-
tensively studied in the recent literature on contextuality:
KCBS, EPR-Bell, and LG systems [21, 33, 34], with their
inconsistently connected versions [35, 36].
Basic Concepts and Definitions.— We begin by formal-

izing the notation and terminology. Consider a finite set
of distinct physical properties Q = {q1, . . . , qn}. These
properties are measured in subsets of Q called contexts,
c1, . . . , cm. Let C denote the set of all contexts, and Cq the
set of all contexts containing a given property q.

The result of measuring property q in context c is a ran-
dom variable Rcq . The result of jointly measuring all prop-
erties within a given context c ∈ C is a set of jointly dis-
tributed random variables Rc =

{
Rcq : q ∈ c

}
.

No two random variables in different contexts, Rcq, Rc
′

q′ ,
c 6= c′, are jointly distributed, they are stochastically unre-
lated [9, 10]. The set of random variables representing the
same property q in different contexts is called a connection
(for q). So the elements of a connection

{
Rcq : c ∈ Cq

}
are

pairwise stochastically unrelated. If all random variables
within each connection are identically distributed, the sys-
tem is called consistently connected ; if it is not necessarily
so, it is inconsistently connected. Consistent connectedness
is also known in QM as the Gleason property [37], outside
physics as marginal selectivity [9], and Ref. [38] lists some
dozen names for the same notion; a recent addition to the
list is no-disturbance principle [39, 40].

The set Q of all properties together with the set C of
all contexts and the set {Rc : c ∈ C} of all sets of random
variables representing contexts is referred to as a system.
In the systems we consider here the set of properties q is
finite (whence the set of contexts c is finite too), and each
random variable has a finite number of possible values (e.g.,
spin measurement outcomes).

We introduce next the notion of a (probabilistic) cou-
pling of all the random variables Rcq in our system [41].
Intuitively, this is simply a joint distribution imposed, or
“forced” on all of them (recall that they include stochasti-
cally unrelated variables from different contexts). Formally,
a coupling of

{
Rcq : q ∈ c ∈ C

}
is any jointly distributed set

of random variables S =
{
Scq : q ∈ c ∈ C

}
such that, for

every c ∈ C,
{
Scq : q ∈ c

}
∼
{
Rcq : q ∈ c

}
, where ∼ stands

for “has the same (joint) distribution as.” One can also
speak of a coupling for any subset of the random variables
Rcq. Thus, fixing a property q, a coupling of a connection{
Rcq : c ∈ Cq

}
is any jointly distributed

{
Xc
q : c ∈ Cq

}
such

that Xc
q ∼ Rcq for all contexts c ∈ Cq. Note that if S is a

coupling of all Rcq, then every marginal (jointly distributed
subset)

{
Scq : c ∈ Cq

}
of S is a coupling of the correspond-

ing connection
{
Rcq : c ∈ Cq

}
.

Expressed in this language, the traditional approach is to
consider a system noncontextual if there is a coupling S of
the random variables Rcq, such that for every property q the
random variables in

{
Scq : c ∈ Cq

}
are equal to each other

with probability 1. That is, for every possible coupling S of
the random variables Rcq and every property q we consider
the marginal

{
Scq : c ∈ Cq

}
corresponding to a connection{

Rcq : c ∈ Cq
}
, and we compute

Pr
[
Scq1q = · · · = S

cqnq
q

]
,
{
cq1, . . . , cqnq

}
= Cq. (1)

If there exists a coupling S for which this probability equals
1 for all q, this S provides a noncontextual description for
our system. Otherwise, if in every possible coupling S the
probability in question is less than 1 for some properties q,
the system is considered contextual.

This understanding, however, only involves consistently
connected systems. As mentioned in the introduction, a
system may be inconsistently connected due to systematic
biases or interactions (such as “signaling in time” in LG sys-
tems). If for some q and some contexts c, c′ ∈ Cq, the distri-
bution of Rcq and Rc

′

q are not the same, then Pr
[
Scq = Sc

′

q

]
cannot equal 1 in any coupling S. There would be noth-
ing wrong if one chose to say that any such inconsistently
connected system is therefore contextual, but contextuality
due to systematic measurement errors or signaling is clearly
a special, trivial kind of contextuality. One should be in-
terested in whether the system exhibits any contextuality
that is not reducible to (or explainable by) the factors that
make distributions of random variables within a connec-
tion different. For systems in general therefore we propose
a different definition.

Definition 1. A system has a maximally noncontextual
description if there is a coupling S of the random variables
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Rcq, such that for any q the random variables
{
Scq : c ∈ Cq

}
in S are equal to each other with the maximum probability
allowed by the individual distributions of Rcq.

To explain, consider a connection
{
Rcq : c ∈ Cq

}
in iso-

lation, and let
{
Xc
q : c ∈ Cq

}
be its coupling. Among all

such couplings there must be maximal ones, those in which
the probability that all variables in

{
Xc
q : c ∈ Cq

}
are equal

to each other is maximal possible, given the distributions
of Xc

q ∼ Rcq. If a connection consists of two dichotomic
(±1) variables R1

q and R2
q , and

{
X1
q , X

2
q

}
is its coupling

(i.e., X1
q , X

2
q are jointly distributed with

〈
X1
q

〉
=
〈
R1
q

〉
,〈

X2
q

〉
=
〈
R2
q

〉
), then by Lemma A3 in Supplementary

Material, the maximal possible expectation
〈
X1
qX

2
q

〉
is

1 −
∣∣〈R1

q

〉
−
〈
R2
q

〉∣∣; a coupling
{
X1
q , X

2
q

}
with this expec-

tation is maximal. Now take every possible coupling S
of all our random variables Rcq, consider the marginals{
Scq : c ∈ Cq

}
corresponding to connections

{
Rcq : c ∈ Cq

}
,

and for each of these marginals compute the probability (1).
If there is a coupling S in which this probability equals
its maximal possible value for every q, this S provides a
maximally noncontextual description for our system. For
consistently connected systems Definition 1 reduces to the
traditional understanding: the maximal probability with
which all variables in

{
Xc
q : c ∈ Cq

}
can be equal to each

other is 1 if all these variables are identically distributed.
Cyclic systems of dichotomic random variables.— We fo-

cus now on systems in which: (S1) each context consists of
precisely two distinct properties; (S2) each property be-
longs to precisely two distinct contexts; and (S3) each ran-
dom variable representing a property is dichotomic (±1).
As shown in Lemma A1 (Supplementary Material), a set
of properties satisfying S1–S2 can be arranged into one or
more distinct cycles q1 → q2 → . . . → qk → q1, in which
any two successive properties form a context. Without loss
of generality we will assume that we deal with a single-cycle
arrangement q1 → q2 → . . .→ qn → q1 of all the properties
{q1, . . . , qn}. The number n is referred to as the rank of the
system.

A schematic representation of a cyclic system is
shown in Figure 1. The LG paradigm exemplifies a
cyclic system of rank n = 3, on labeling the observ-
ables q1, q2, q3 measured chronologically. The contexts
{q1, q2} , {q2, q3} , {q3, q1} here are represented by, respec-
tively, pairs

(
R1

1, R
1
2

)
,
(
R2

2, R
2
3

)
,
(
R3

3, R
3
1

)
with observed

joint distributions, whereas
(
R1

1, R
3
1

)
,
(
R2

2, R
1
2

)
,
(
R3

3, R
2
3

)
are connections for q1, q2, q3, respectively. The EPR-Bell
paradigm exemplifies a cyclic system of rank n = 4, on la-
beling the observables q1, q3 for Alice and q2, q4 for Bob.
Cyclic systems of rank n = 5 are exemplified by the KCBS
paradigm, on labeling the vertices of the KCBS pentagram
by q1 → q2 → q3 → q4 → q5.
(Non)Contextuality Criterion.— For any n, and any

x1, . . . , xn ∈ R, we define the function

s1 (x1, . . . , xn) = max
ι1,...,ιn∈{−1,1},

∏
k ιk=−1

∑
k

ιkxk. (2)

The maximum is taken over all combinations of ±1 co-

A"

R1"

R2"

R2"

R3"

R1"
Rn#

Rn#

q1"

q2"

q3"

qn#

1"

1"

2"

2"

n&1"

n#

n#

Figure 1. A schematic representation of a cyclic (single-cycle)
system of rank n > 1. The properties q1, . . . , qn, q1 form a circle,
any two successive properties (qi, qi⊕1) form a context, denoted
ci (⊕ is clockwise shift 1 7→ 2 7→ . . . 7→ n 7→ 1). In a given
context ci the random variable representing qi is denoted Ri

i,
and the one representing qi⊕1 is denoted Ri

i⊕1. Each property
qi therefore is represented by two random variables: Ri

i (when
qi is measured in context ci) and Ri	1

i (when qi is measured in
context ci	1). The pair

(
Ri	1

i , Ri
i

)
is a connection for qi, and

the pair
(
Ri

i, R
i
i⊕1

)
represents the context ci.

efficients ι1, . . . , ιn containing odd numbers of −1’s. The
following is our main theorem.

Theorem 2. A cyclic system of rank n > 1 with di-
chotomic random variables (see Figure 1) has a maximally
noncontextual description if and only if

s1
(〈
RiiR

i
i⊕1
〉
, 1−

∣∣〈Rii〉− 〈Ri	1i

〉∣∣ : i = 1, . . . , n
)
≤ 2n− 2

(3)
(s1 here having 2n arguments, each entry being taken with
i = 1, . . . , n ).

See Supplementary Material for the proof. In (3),〈
RiiR

i
i⊕1
〉
are the quantum correlations observed within

contexts, whereas 1−
∣∣〈Rii〉− 〈Ri	1i

〉∣∣ are the maximal val-
ues for the unobservable correlations within the couplings
of connections. If the system is consistently connected, i.e.,〈
Rii
〉
=
〈
Ri	1i

〉
, then these maximal values equal 1. By

Corollary A10, the criterion (3) then reduces to the for-
mula

s1
(〈
RiiR

i
i⊕1
〉
: i = 1, . . . , n

)
≤ n− 2, (4)

well-known for n = 3 (the LG inequality in the form de-
rived in Ref. [2]) and for n = 4 (CHSH inequalities [29]).
For n = 5, (4) contains the KCBS inequality (which by
Corollary A.11 is not only necessary but also sufficient for
the existence of a maximally noncontextual description).
Finally, for any even n ≥ 4, inequality (4) contains the
chained Bell inequalities studied in Refs. [43, 44]. It is
known that for n > 4 the chained Bell inequalities are not
criteria, the latter requiring many more inequalities [45–48].

Generally, some of the terms
〈
Rii
〉
−
〈
Ri	1i

〉
in (3) may be

nonzero. Thus, in an LG system (n = 3), if inconsistency
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is due to “signaling in time” [18, 19], these may include〈
R2

2

〉
−
〈
R1

2

〉
and

〈
R3

3

〉
−
〈
R2

3

〉
but not

〈
R1

1

〉
−
〈
R3

1

〉
, because

q1 cannot be influenced by later events. However,
〈
R1

1

〉
−〈

R3
1

〉
may be nonzero due to contextual biases in design,

if something in the procedure of measuring q1 is different
depending on whether the next measurement is going to be
of q2 or q3.
An application to experimental data.— To illustrate the

applicability of our theory to real experiments, consider
the data from the KCBS experiment of Ref. [20]. The
experiment uses a single photon in a quantum overlap of
three optical modes (paths) as an indivisible quantum sys-
tem. Readout is performed through single-photon detec-
tors that terminate the three paths. Context is chosen
through “activation” of transformations, by rotating a wave-
plate that precedes each beamsplitter to change the behav-
ior of two out of three paths. Each transformation leaves
one path untouched, which serves as justification for con-
sistent connectedness of the corresponding measurements,
〈Rii〉 = 〈R

i	1
i 〉, so that the target inequality is (4) for n = 5.

R1
1 and R5

1 are recorded in different experimental se-
tups with zero or four polarizing beamsplitters “activated”.
These outputs have significantly different distributions:
from Ref. [20] Table 1, 〈R1

1〉 = .136(6), 〈R5
1〉 = .172(4),

and taking them as means and standard errors of 20 repli-
cations, the standard t-test with df = 19 is significant at
0.1%. Lapkiewicz et al., deal with this by introducing in (4)
a correction term involving 〈R1

1R
5
1〉. They estimate 〈R1

1R
5
1〉

by identifying R1
1 with R′1, an output measured in a sep-

arate context and in a special manner: instead of photon
detections it is measured by blocking two paths early in the
setup. While this results in a well-motivated experimental

test, the identification of R′1 with R1
1 involves additional

assumptions [22, 23]. Furthermore, Lapkiewicz et al. have
to discount the fact that the assumption 〈Rii〉 = 〈R

i	1
i 〉 can

also be challenged for i = 4: the same t-test as above for
〈R4

4〉 = .122(4) and 〈R3
4〉 = .142(4) is significant at 1%. We

see that the traditional approach adopted in Ref. [20] en-
counters considerable experimental and analytic difficulties
due to the necessity of avoiding inconsistent connectedness.

Our theory allows one to analyze the data directly as
found in the measurement record. It is convenient to do
this by using the inequality

s1
( 〈
RiiR

i
i⊕1
〉
: i = 1, . . . , n

)
−

n∑
i=1

∣∣〈Rii〉− 〈Ri	1i

〉∣∣ ≤ n− 2,

(5)
which, by Corollary A9, follows from the criterion (3)
[42]. One way of using it is to construct a conservative
100 (1− α)% confidence interval with, say, α = 10−10 for
the left-hand side of (5) with n = 5 and show that its lower
endpoint exceeds n − 2 = 3. One can, e.g., construct 10
Bonferroni 100 (1− α/10)% confidence intervals for each
of the approximately normally distributed terms

〈
RiiR

i
i⊕1
〉

and
〈
Rii
〉
−
〈
Ri	1i

〉
(i = 1, . . . , 5), with respective error

terms read or computed from Table 1 of Ref. [20], and then
determine the range of (5). Treating each estimated term
as the mean of 20 observations, we have t1−α/10 (19) < 14
and so a conservative confidence interval for each term is
given by ±14 × standard error. Using these intervals, we
can calculate the conservative 100

(
1− 10−10

)
% confidence

interval for (5) as

s1
(−.805±.028︷ ︸︸ ︷〈

R1
1R

1
2

〉
,

−.804±.042︷ ︸︸ ︷〈
R2

2R
2
3

〉
,

−.709±.042︷ ︸︸ ︷〈
R3

3R
3
4

〉
,

−.810±.028︷ ︸︸ ︷〈
R4

4R
4
5

〉
,

−.766±.028︷ ︸︸ ︷〈
R5

5R
5
1

〉 )
−
∣∣ 〈R1

1

〉
−
〈
R5

1

〉︸ ︷︷ ︸
−.036±.101

∣∣− ∣∣ 〈R2
2

〉
−
〈
R1

2

〉︸ ︷︷ ︸
−.004±.140

∣∣− ∣∣ 〈R3
3

〉
−
〈
R2

3

〉︸ ︷︷ ︸
.006±.126

∣∣− ∣∣ 〈R4
4

〉
−
〈
R3

4

〉︸ ︷︷ ︸
−.020±.080

∣∣− ∣∣ 〈R5
5

〉
−
〈
R4

5

〉︸ ︷︷ ︸
−.006±.080

∣∣ = [3.127, 4.062].
(6)

The system is contextual. The conclusion is the same
as in Ref. [20], but we arrive at it by a shorter and more
robust route.

Conclusion.— We have derived a criterion of
(non)contextuality applicable to cyclic systems of ar-
bitrary ranks. Even for consistently connected systems
this criterion has not been previously known for ranks
n ≥ 5 (KCBS and higher-rank systems). However, it is
the inclusion of inconsistently connected systems that is of
special interest, because it makes the theory applicable to
real experiments. A “system” is not just a system of prop-
erties being measured, but also a system of measurement
procedures being used, with possible contextual biases

and unaccounted-for interactions. Our analysis opens the
possibility of studying contextuality without attempting
to eliminate these first, whether by statistical analysis or
by improved experimental procedure.

ACKNOWLEDGMENTS

This work is supported by NSF grant SES-1155956,
AFOSR grant FA9550-14-1-0318, A. von Humboldt Foun-
dation, and FQXi through Silicon Valley Community Foun-
dation. We thank J. Acacio de Barros, Gary Oas, Sam-
son Abramsky, Guido Bacciagaluppi, Adán Cabello, Andrei
Khrennikov, and Lasse Leskelä for numerous discussions.



Criterion of Contextuality 5

[1] S. Kochen and E. P. Specker. The problem of hidden vari-
ables in quantum mechanics. Journal of Mathematics and
Mechanics, 17:59–87, 1967.

[2] P. Suppes and M. Zanotti. When are probabilistic explana-
tions possible? Synthese 48:191–199, 1981.

[3] A. Fine. Hidden variables, joint probability, and the Bell
inequalities. Physical Review Letters 48:291–295, 1982.

[4] P. Kurzynski, R. Ramanathan, and D. Kaszlikowski. En-
tropic test of quantum contextuality. Physical Review Let-
ters 109:020404, 2012.

[5] J.-Å. Larsson. A Kochen-Specker inequality. Europhysics
Letters, 58(6):799–805, 2002.

[6] E.N. Dzhafarov and J.V. Kujala. All-possible-couplings
approach to measuring probabilistic context. PLoS ONE
8(5):e61712. doi:10.1371/journal.pone.0061712, 2013.

[7] E.N. Dzhafarov and J.V. Kujala. No-Forcing and No-
Matching theorems for classical probability applied to quan-
tum mechanics. Foundations of Physics 44:248–265, 2014.

[8] E.N. Dzhafarov and J.V. Kujala. Embedding quantum
into classical: contextualization vs conditionalization. PLoS
One 9(3):e92818. doi:10.1371/journal.pone.0092818, 2014.

[9] E.N. Dzhafarov and J.V. Kujala. A qualified Kolmogoro-
vian account of probabilistic contextuality. Lecture Notes
in Computer Science 8369:201–212, 2014.

[10] E.N. Dzhafarov and J.V. Kujala. Contextuality is about
identity of random variables. Physica Scripta T163, 014009,
2014 (available as arXiv:1405.2116).

[11] E.N. Dzhafarov and J.V. Kujala. The Joint Distri-
bution Criterion and the Distance Tests for selective
probabilistic causality. Frontiers in Psychology 1:151
doi:10.3389/fpsyg.2010.00151, 2010.

[12] S. Popescu and D. Rohrlich. Quantum nonlocality as an
axiom. Foundations of Physics 24:379–385, 1994.

[13] J. Bell. On the Einstein-Podolsky-Rosen paradox. Physics
1:195-200, 1964.

[14] J. Bell. On the problem of hidden variables in quantum
mechanics. Review of Modern Physic 38:447-453, 1966.

[15] D. Bacon and B. F. Toner. Bell Inequalities with auxiliary
communication. Physical Review Letters 90:157904, 2003.

[16] G. Adenier and A. Yu. Khrennikov. Is the fair sampling
assumption supported by EPR experiments? Journal of
Physics B: Atomic, Molecular and Optical Physics 40:131,
2007.

[17] A.J. Leggett and A. Garg. Quantum mechanics versus
macroscopic realism: Is the flux there when nobody looks?
Physical Review Letters, 54:857–860, 1985.

[18] J. Kofler and Č. Brukner. Condition for macroscopic realism
beyond the Leggett-Garg inequalities. Physical Review A
87:052115, 2013.

[19] G. Bacciagaluppi. Leggett-Garg inequalities, pilot waves
and contextuality. International Journal of Quantum Foun-
dations 1, 1-17, 2015.

[20] R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S.
Ramelow, M. Wieśniak, and A. Zeilinger. Experimental
non-classicality of an indivisible quantum system. Nature
474: 490–93, 2011.

[21] A.A. Klyachko, M.A. Can, S. Binicioğlu, and A.S. Shu-
movsky. Simple test for hidden variables in spin-1 systems.
Physical Review Letters, 101(2):020403, 2008.

[22] J. Ahrens, E. Amselem, A. Cabello, and M. Bourennane.
Two fundamental experimental tests of nonclassicality with
qutrits. Scientific Reports 3, 2013.

[23] R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S.
Ramelow, M. Wieśniak, and A. Zeilinger. Comment on
“Two Fundamental Experimental Tests of Nonclassicality
with Qutrits”. arXiv:1305.5529, 2013.

[24] A. Peres. Quantum Theory: Concepts and Methods, Dor-
drecht: Kluwer, 1995.

[25] A. Cabello, J. Estebaranz, and G. Garcìa-Alcaine. Bell-
Kochen-Specker Theorem: A Proof with 18 vectors”,
Physics Letters A 212:183–87, 1996.

[26] C. Simon, Č. Brukner, and A. Zeilinger. Hidden-variable
theorems for real experiments. Physical Review Letters,
86(20):4427–4430, 2001.

[27] A. Cabello. Experimentally testable state-independent
quantum contextuality. Physical Review Letters,
101(21):210401, 2008.

[28] S. Yu and C.H. Oh. State-Independent proof of Kochen-
Specker theorem with 13 rays. Physical Review Letters,
108(3):030402, 2012.

[29] J.F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt.
Proposed experiment to test local hidden-variable theories.
Physical Review Letters 23:880–884, 1969.

[30] J.F. Clauser and M.A. Horne. Experimental consequences
of objective local theories. Physical Review D 10:526–535,
1974.

[31] Mermin, N. D. Hidden variables and the two theorems of
John Bell. Rev. Mod. Phys. 65, 803–815 (1993).

[32] A. Winter. What does an experimental test of quantum con-
textuality prove or disprove? Journal of Physics A: Math-
ematical and Theoretical, 47(42):424031, 2014.

[33] A. Cabello. Simple explanation of the quantum viola-
tion of a fundamental inequality. Physical Review Letters,
110:060402, 2013.

[34] A. Cabello, S. Severini, and A. Winter. Graph-theoretic
approach to quantum correlations. Physical Review Letters,
112:040401, 2014.

[35] E.N. Dzhafarov and J.V. Kujala. Generalizing Bell-type
and Leggett-Garg-type inequalities to systems with signal-
ing. arXiv:1407.2886, 2014.

[36] E.N. Dzhafarov, E.N., J.V. Kujala, and J.-Å. Larsson.
Contextuality in three types of quantum-mechanical sys-
tems. Foundations of Physics 2015, DOI 10.1007/s10701-
015-9882-9.

[37] A. Cabello, S. Severini, and A. Winter. (Non-
)Contextuality of physical theories as an axiom. Physical
Review Letters 112:040401, 2014.

[38] J. Cereceda. Quantum mechanical probabilities and gen-
eral probabilistic constraints for Einstein–Podolsky–Rosen–
Bohm experiments. Foundations of Physics Letters 13: 427–
442, 2000.

[39] R. Ramanathan, A. Soeda, P. Kurzynski, and D. Kaszn-
likowski. Physical Review Letters 109:050404, 2012.

[40] P. Kurzynski, A. Cabello, and D. Kaszlikowski. Fundamen-
tal monogamy relation between contextuality and nonlocal-
ity. Physical Review Letters 112:100401, 2014.

[41] H. Thorisson. Coupling, Stationarity, and Regeneration.
New York: Springer, 20002.

[42] This formula is in fact equivalent to (3), as conjectured in
Ref. [36] and proved in Ref. [49].

[43] P. Pearle. Hidden-variable example based upon data rejec-
tion. Physical Review D2, 1418–1425, 1970.

[44] S. L. Braunstein and C. M. Caves. Wringing out better Bell
inequalities. Annals of Physics 202, 22–56, 1990.



Criterion of Contextuality 6

[45] R. F. Werner and M. M. Wolf. All-multipartite Bell-
correlation inequalities for two dichotomic observables per
site. Physical Review A 64, 032112, 2001.

[46] R. F. Werner and M. M. Wolf. Bell inequalities and entan-
glement. Quantum Information and Computation 1, 1-25,
2001.

[47] R. M. Basoalto and I. C. Percival. BellTest and CHSH ex-
periments with more than two settings. Journal of Physics

A: Mathematical & General 36, 7411–7423, 2003.
[48] Dzhafarov, E.N., Kujala, J.V.: Selectivity in probabilistic

causality: Where psychology runs into quantum physics.
Journal of Mathematical Psychology 56, 54-63, 2012.

[49] J.V. Kujala and E.N. Dzhafarov. Proof of a conjecture
on contextuality in cyclic systems with binary variables.
arXiv:1503.02181.


