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Thermalized chemical reactions driven under dynamical load are characteristic of activated dy-
namics for arbitrary non-autonomous systems. Recent generalizations of transition state theory to
obtain formally exact rates have required the construction of the time-dependent transition state
trajectory. Here we show that Lagrangian descriptors can be used to obtain this structure directly.
By developing a phase space separatrix that is void of recrossings, these constructs allow for the
principal criterion in the implementation of modern rate theories to be satisfied. Thus, the reactive
flux over a time-varying barrier can be determined without ambiguity in chemical reactions. This
suggests that this approach should be applicable to any system subjected to arbitrary driving and
thermal fluctuations.
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Paramount in the formulation of the theory for chem-
ical reaction dynamics is the control of rates, and routes
through which reactants transform to products. The
emergence of phenomena driven under a dynamical load
—such as molecular structure assembly [1, 2], molecu-
lar machines [3, 4], mechanochemistry [5–7], and elec-
tric field-induced reactions [8–10]— has demonstrated
that novel products can be realized through nonequilib-
rium forcing. Such phenomena can be captured through
nonequilibrium thermodynamic models in which external
forces are represented by time-varying energy surfaces
[11–14]. They have been observed experimentally in the
control of state-to-state transitions through mechanical
or temperature modulated energy surfaces in biologically
relevant systems [15–17]. In these directed processes, the
rates of the reaction can be obtained from purely geomet-
rical arguments through transition state theory (TST)
[18–23]. The principal step in the application of TST,
and its variants, relies on the calculation of reactive flux
through a dividing surface (DS) that separates reactant
and product confirmations. In cases where this DS is a
surface of no return, TST is formally exact.

In autonomous Hamiltonian systems, the formulation
of normally hyperbolic invariant manifolds (NHIMs) [24–
30] has provided a critical step toward the construction
of optimal dividing surfaces. The study of NHIMs is a
focus of modern reaction dynamics as knowledge of their
geometry allows a priori determination of the character-
istics of the reaction. However, a distinguishing feature
of micro-scale molecular systems, with respect to macro-
scopic dynamical counterparts, is the inclusion of thermal
fluctuations, and in a fluctuating environment the for-
mulation of the NHIM as a constant energy hypersphere
breaks down. Thus, in solution and on time-varying en-
ergy surfaces the construction of reaction geometries has
generally been limited to theoretical constructs and local-

ized approximations. In this Letter, we report a method-
ology for obtaining a surface of no-return and the at-
tached reaction conduits on time-varying potential en-
ergy surfaces subject to thermal fluctuations, described
through a Langevin equation, using the method of La-
grangian descriptors (LDs). This opens the possibility
of addressing dissipative activation processes and chemi-
cal reactions on complex energy landscapes far from the
near-linear regimes that have been ac- cessible through
perturbation theory. It also enables the determination of
exact rates for processes occurring on time-varying en-
ergy landscapes using the calculation of the reactive flux
through the DS.
The general form of a LD [32, 33] is

M(q0, t0)τ =

∫ t0+τ

t0−τ

P
(

q(t)
)

dt, (1)

where P is a bounded positive quantity that depends on
the unique trajectory q(t) which evolved from q0 at time
t0. The application of LDs to nonautonomous systems
has provided insight into the phase-space structures gov-
erning dynamical evolution in aperiodically modulated
fields [33], including ocean flow patterns [32]. At micro-
scopic length-scales, thermal forces arise from solvent-
reactant and reactant-reactant interactions. In a large
number of known cases [34], the dynamics can be rep-
resented though a Langevin equation of motion with re-
spect to some characteristic configuration variable q as

mq̈ = −γq̇ − ∂V (q, t)

∂q
+
√
2σ ξα(t), (2)

where γ ≥ 0 is a dissipation parameter and the stochastic
term ξα(t) is white noise obeying the statistical proper-
ties 〈ξα(t)〉 = 0 and 〈ξα(t)ξα(t′)〉 = δ(t − t′) for some
noise sequence α. The thermal degrees of freedom are
expressed in terms of the stochastic mean field ξα whose
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FIG. 1. (color online) Phase space contour plots of L(q0, t0) for varying values of t0 are shown in (a)-(d) for a symmetrical
barrier (κ = 1, γ = 0) and in (g)-(j) for a thermalized asymmetrical barrier (κ = 0.5, γ = 25mu/ps). In all panels, the TS
trajectory T (t) is shown as a striped curve (white-orange) and the stable manifold is shown as a dashed curve (white). In the
athermal case, T is shown over an entire period of oscillation, while in the the thermal case it is shown over the interval [0, t0].
The time-varying potential surface is shown above in units of kBT at 298K, which is the temperature of the thermal bath. The
corresponding values of t0 are marked in (e) and (f) for thermal and athermal cases respectively, with trajectories of T , F ,

as well as Ṫ (units shown at right). The thermal driving (gray) given by
∫

t+∆t

t
ξα(t

′)dt′ is shown in (f) for each integration

timestep ∆t = 0.001 ps [31]. Parameters in all panels are τ = 0.5 ps, m = 10mu, c1 = c2 = 0.75 Å, Ω1 = 15 ps−1, a = 0.85 Å
−1

,
and τw = 0.2 ps.

strength is varied through the parameter σ = γkBT , thus
obeying a fluctuation-dissipation relation.

When a reaction is subjected to a time-varying ex-
ternal force, a non-autonomous TS persists [35, 36]
and corresponds to a moving bottleneck in phase space
through which reactive trajectories must pass as product
is formed. The Eckart barrier is often used to repre-
sent molecular reactions under stationary conditions for
a given asymmetry parameter κ representing the energy
difference between reactants and products. It can be gen-

eralized to a time-varying form (see Fig. 1),

V (q, t) =
V0(1 − κ)

1 + exp [−2a(q −F(t))]

+
V0(1 +

√
κ)2

4
sech2 [a(q −F(t))] ,

(3)

so as to separate reactants and products along a gener-
alized coordinate q subject to an external time-varying
forcing F(t). Here, we consider the case when variations
in the energy surface V (q, t) result from a bichromatic
driving form F(t) = c1 sin(Ω1t) + c2 sin(Ω2t) which is
periodic, with a resonant frequency Ω2 = 2Ω1.
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Every noise sequence ξα(t), coupled with the realiza-
tion of the deterministic forcing F(t), has a hyperbolic
trajectory T (t) [37–39] hidden in the phase space struc-
ture that mediates reactive flow. In the field of chemi-
cal reaction dynamics, this trajectory has been termed
the transition state (TS) trajectory [40–42] and a DS at-
tached to this trajectory is free of recrossings. Despite its
paramount importance, constructing the TS trajectory
in thermal environments has been previously limited to
parabolic barrier approximations, thus limiting the appli-
cability of TST on energy surfaces subjected to thermal
fluctuations.
As illustrated in Fig. 1, on time-varying energy sur-

faces, frozen-time vector fields [38, 43] provide little in-
sight into the complex geometry of the TS trajectory
which does not follow the time evolution of the energetic
barrier top (BT). Instead the TS trajectory is bounded
and associated with stable Ws and unstable manifolds
Wu which separate reactive and nonreactive basins in
phase space. These manifolds are formed by the set of ini-
tial conditions, at a time t0, of trajectories that approach
T (t) as t → ∞ and t → −∞, respectively. When F(t) is
a periodic function, and the barrier motion is athermal
(γ = 0), the resulting TS trajectory is a periodic orbit
O which has the same period as F(t) (see Fig. 1(a)-(e)).
In a thermal environment (γ > 0 and T > 0), T (t)
will depend on the strength of the thermal fluctuations
(parametrized through σ) and the specific noise sequence,
as shown in Fig. 1(f)-(j).
To construct the TS trajectory and associated mani-

folds we note that it is the only trajectory that remains
bounded as t → ∞ and as t → −∞. Thus, it has ex-
tremal properties, e.g., it is the trajectory with the min-
imum arc length over sufficient propagation. The LDs
that correspond to the arc length of the path traversed
in configuration space over a time τ are

Lf,b(q0, t0)τ =

∫

f,b

∥

∥q̇c(q0, t0, t)
∥

∥ dt, (4)

where the intervals of forward “f” and backward “b” inte-
gration are [t0, t0 + τ ] and [t0 − τ, t0], ‖·‖ is the Euclidean
metric, and qc are generalized coordinates. In the nonau-
tonomous system given by Eq. (2), the manifolds associ-
ated with the TS trajectory T are also time-dependent.
For the case of a barrier (3) separating reactant and prod-
uct states, in a suitable phase space region Rf, holding
the coordinate q0 constant and minimizing with respect
to q̇0 yields the stable manifold

Ws(q0 = C, t0) = argmin Lf(q̇0, q0 = C, t0)Rf
, (5)

in forward-time, and the unstable manifold

Wu(q0 = C, t0) = argmin Lb(q̇0, q0 = C, t0)Rb
, (6)

in backward-time about the regionRb, where argmin(·) is
the argument of the minimum function, i.e., we seek the

(b)

(a)

(c)

(d)

(g)

(e)
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FIG. 2. (color online) Surfaces formed by L(q0, t0) with
τ = 0.5 ps are shown above for athermal symmetrical (a)-(c)
and thermalized asymmetrical (g)-(j) barriers with the corre-
sponding contour plot shown below in each panel. The initial
times are (from top to bottom) t0 ∈ {0, 0.129, 0.356}(left) and
t0 ∈ {0, 0.209, 0.4} (right). All units and parameters are as
in Fig. 1. (h) Calculation of Lf,b with q0 held constant at the
marked values and τ = 0.75 ps.

value of q̇0 that minimizes Lf,b while holding q0 constant.
The TS trajectory can then be constructed by finding the
extrapolated point of intersection between Ws and Wu

at each time t. Alternatively, a minimization procedure
can be performed over an object that combines forward-
and backward-time information, namely L = Lf + Lb.
The phase-space coordinates of the TS trajectory at t0
can then be constructed directly as

T (t0) = argmin L(q0, t0)Rf∩Rb
, (7)

as it is the unique trajectory that remains bounded for
all time [44].
A dissipative environment leads to exponential con-

traction and growth in the phase-space volumes for the
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FIG. 3. (color online) Phase portraits of (a) forward-time and
(b) backward-time integration of an ensemble of trajectories
in a thermal environment. The initial position for every tra-
jectory is q0 = −1 Å. Pieces of the stable Ws and unstableWu

manifolds at t0 = 0 are shown in white and marked accord-
ingly. Contour plots of the forward-time and backward-time
surface Lf,b with τ = 1.0 ps are shown in (c) and (d), respec-
tively. Parameters in all panels are as in the asymmetrical
thermalized case in Fig. 1.

evolution of forward and backward trajectories, respec-
tively. To avoid the dominant contribution of Lb, we
renormalize the arc length as L = gfLf + gbLb, where
gf,b are weights. To compensate for the exponential be-
havior of dissipation, we have chosen gf,b = e±γτw/m for
some characteristic intermediate time τw where the typi-
cal contributions from Lb and Lf are comparable over an
ensemble of trajectories. After this weighing procedure,
the instantaneous structures of the manifolds are revealed
as valleys on the L surface, as shown in Fig. 2 [45]. Most
importantly, about the region of intersection between the
stable and unstable manifolds Rf∩Rb, a conical structure
emerges with the vertex corresponding to T . As shown
in Fig. 3(a) and (b), the stable (unstable) manifold sep-
arates reactive and nonreactive trajectories in forward-
(backward-) time. Thus, the construction of these reac-
tion conduits through a minimization procedure on Lf,b

reveals the phase-space geometries (see Fig. 3(c) and (d))
separating phase space basins.

The principal steps in the implementation of mod-
ern reaction rate theory are the construction of a DS
that is crossed once and only once by reactive trajec-
tories, and the evaluation of the reactive flux through
the DS. If a surface of no return can be constructed,
a classically exact reaction rate can be obtained [20].

ba

FIG. 4. (color online) Time evolution of a swarm of trajecto-
ries in (a) athermal and (b) thermalized environments. Each
trajectory is colored according to the difference in initial ve-
locity with respect to the stable manifold at q0 = T (0) − 1 Å
and t0 = 0. The trajectories of two dividing surfaces: the TS
trajectory (orange) and the instantaneous BT (striped black)
are also shown. The respective reactant populations P for
each choice of dividing surface, and the additional static sur-
face q = 0, are shown below. The system parameters are as
in Fig. 1.

For the thermalized reactive system evolving through
(2), we construct a time-dependent DS that is located
at the instantaneous position of the TS trajectory. This
DS is free of recrossings in periodically driven [35, 36],
athermal systems (see Fig. 4(a)). We now examine the
validity of the DS constructed by minimizing Eq. (4)
in any thermal environment by focusing on the reac-
tion dynamics of an ensemble of trajectories. Each tra-
jectory has an initial position q0 in the reactant well
and initial velocity sampled from a uniform distribution
U
[

Ws(q0, 0)− 1 Å/ps,Ws(q0, 0) + 1 Å/ps
]

. The survival
probability of each trajectory is followed in time to
compute the normalized reactant population P (t) =
nR(t)/N , where nR(t) is the number of trajectories in the
reactant well at time t and N is the total number of tra-
jectories. The decay rate of P (t) depends on the choice
of DS, and a recrossing-free DS results in monotonically
decreasing behavior. The use of the instantaneous ener-
getic BT as the DS results in oscillatory behavior due to
recrossings. As shown in Fig. 4, when using the BT as
the DS, the functional shape of P (t) mimics the oscilla-
tory driving motion. This behavior can also be seen in
parabolic systems [40–42] where the TS trajectory has a
smaller amplitude than the barrier motion itself [35, 46].
The use of the naive static surface q = 0, leads to signifi-
cant recrossings that are strongly dependent on the spe-
cific realization of the noise ξα. This is in sharp contrast
to the monotonic behavior shown in Fig. 4(b) using the
DS constructed by the method of extremal LDs through
Eq. (7), and thereby illustrating the non-recrossing cri-
terion.

In summary, we have developed a minimal and robust
methodology through the use of an extremal Lagrangian
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descriptor to construct phase space separatrices and sur-
faces of no return on time-varying energy surfaces sub-
jected to thermal fluctuations. These findings allow for
the classically exact calculation of reactive flux through
a recrossing-free dividing surface and have suitable appli-
cations in the development and implementation of mod-
ern and post-modern transition state theories. The re-
sults reported here are obtained in the physical context
of reaction dynamics, although they are also applicable
to other dynamical systems in which noise plays a role.
The methods are generalizable over variation in geome-
try of the potential and realization of the driving form.
Controlling the hyperbolic trajectories [39, 47, 48] and
the associated manifolds constructed in this Letter pro-
vides a critical step toward optimal control of reaction
rates and mechanisms, and could, in the context of a
general theoretical formulation, facilitate the design of
novel synthetic products and materials.
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