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The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum
systems where the perturbation results in a certain ionization probability by tunneling processes.
Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imagi-
nary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate
how the low order coefficients of a divergent perturbation series can be used to obtain excellent
approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The
key is to use analytic continuation functions with a built-in singularity structure within the com-
plex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations.
In the examples discussed the analytic continuation functions are Gauss hypergeometric functions,
which take as input fourth order perturbation theory and return excellent approximations to the
complex perturbed eigenvalue. These functions are Borel-consistent and dramatically outperform
widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.

PACS numbers: 11.15.Bt, 11.10.Jj, 32.60.+i

Since the pioneering work of Dyson [1], the fundamen-
tal problem of how to reconstruct physical observables
from divergent power-series expansions has remained an
active area of research [2, 3]. This problem has been en-
countered in virtually all areas of quantum physics, such
as statistical [4–6], string [3] and quantum field theo-
ries [7–9], as well as in many-body problems of condensed
matter physics [10, 11] and quantum chemistry [12].
Simple examples can be found in single-particle quan-

tum mechanics [2–4, 9, 13–17]. For instance, the per-
turbation expansion for the Stark Hamiltonian has zero
radius of convergence [15–17]. The electronic ground
state energy of hydrogen in a homogeneous electric field
is shifted and broadened as the electric field intensity, F ,
increases. As a function of F , the perturbed ground state
energy then has both a real part ∆ and an imaginary part
Γ/2, E(F ) = ∆(F ) − iΓ(F )/2. The latter reflects the
tunneling rate in and out of the Coulomb potential [18],
which is very difficult to obtain perturbatively. To see
this, let f ≡ (F/4)2 and consider the perturbative ex-
pansion [16] for the ground state energy of hydrogen in
powers of F around F = 0 –we use atomic units (a.u.)–,

E(F ) ∼ −1

2

∞
∑

n=0

enf
n (1)

= −1

2

(

1 + 72f + 28 440f2 + 40 204 464f3 + · · ·
)

.

The same-sign expansion coefficients en are real and grow
factorially with 2n and thus the series in Eq. (1) has zero
radius of convergence. No matter how small F is, the se-
ries in Eq.(1) will never converge to E(F ), and so “∼” is
used in Eq. (1) to indicate that the RHS is an asymptotic
expansion of the LHS. Furthermore the RHS in Eq. (1) is
real and therefore its partial sums cannot directly yield
−iΓ(F )/2. Ultimately the divergence of a perturbation
expansion stems from the presence of singularities (poles

and/or branch cuts) in E(F ) for complex F : the series in
Eq. (1) diverges because E(F ) is not analytic at F = 0
which is a branch point. Physically the semi-discrete
spectrum for F = 0 is replaced by a dense continuum of
eigenvalues when F 6= 0; E(F ) is a complex resonance
eigenvalue, characterizing the position (ReE) and width
(ImE)of a peak in the density of states. To evaluate
E(F ) for real F is necessary to approach the real F axis
from above or below, corresponding to incoming or out-
going boundary conditions. The imaginary part of E(F )
discontinuously changes sign at ImF = 0.

Remarkably, accurate calculations of Γ(F ) have been
achieved by a combining Eq. (1) with Borel-Padé (BP)
resummation [17, 19–21] . Often, for Stark-like prob-
lems these techniques require far too many coefficients
for them to be reasonably accurate. Padé approximants
(PA’s) [22] and the techniques based on them –such as
BP– can account for poles in E(F ) but they are not well-
suited to mimic branch cuts, necessitating the calculation
of very many coefficients. Resummation approaches that
go beyond Padé remain virtually unkown by most users of
perturbation theory: quadratic Padé approximants [23]
are able to incorporate square-root branch cuts, but have
been seldomly used; modern resummation schemes that
combine perturbation theory with large-order informa-
tion [6] remain largely unexplored. Methods to reliably
estimate quantities like Γ(F ) from low order perturba-
tion theory are therefore badly needed: in practice one
has available only low-order coefficients to work with.

These considerations lead us to the following ques-
tion: Can we calculate Γ(F ) accurately with just a few
coefficients? In this Letter, we demonstrate that low-
order approximations can, paradoxically, reproduce non-
perturbative quantities like Γ(F ) with excellent accuracy
even for rather large values of the perturbation strength.
This is achieved by using Bender-Wu dispersion rela-
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tions [13] to guess the branch cut structure of E(F ),
and designing approximants with the desired branch-
cut structure “built-in” and with flexible branch points.
For the Stark problem the branch cut structure is in-
deed known from Bender-Wu dispersion relations [13]:
E(F ) possesses branch points at F = 0 and F → ±∞;
hypergeometric functions are shown to well reproduce
this double branch cut, yielding accurate low order ap-
proximations for Stark-like problems and showcasing an
alternative approximating philosophy where knowledge
of the convergence-limiting singularity structure in the
complex-F plane is exploited to design accurate low or-
der approximants.

Let us then start by trying to calculate E(F ) from
Eq. (1). Traditionally, the first choice is to calculate PA’s
[22]. These are parameterized rational approximations,

E(F ) ≈ EL/M (F ), where EL/M (F ) = (
∑L

n=0 pnf
n)/(1+

∑M
n=1 qnf

n), and the parameters pn and qn are deter-
mined by equating each order up to L +M = N in the
Taylor and asymptotic series of EL/M (F ) and E(F ), re-
spectively, so that E(F ) = EL/M (F )+O(fL+M+1). PAs
and other similarly simple sequence transformations [26–
28] are valuable tools for analytic continuation (AC), and
can work well in many cases [25]. They provide a family
of rational functions that are easily built order by order:
the first-order PA’s are E1/0 and E0/1; the second-order
ones areE2/0, E0/2 and E1/1; etc. By studying the result-
ing Padé table, one can in many cases extract good ap-
proximations to the expectation value of interest. How-
ever, by approximating E(F ) with a rational function
of F , one is imposing an asymptotic behavior for large
values of F which is in general not physical. Approxi-
mating ∆(F ) can be difficult because the denominator
in EL/M can vanish for specific values of the interaction
strength. More importantly, EL/M (F ) is a real number
for real F , and therefore ΓL/M (F ) = 0, i.e. the standard
PAs cannot work for our problem as they fail to give
Γ(F ) 6= 0 [17, 19]. Γ(F ) 6= 0 arises from evaluating E(F )
“on” the branch-cut, where known sequence transforma-
tions fail [7, 27, 28]; such techniques are known to work
well for strictly alternating series while the coefficients in
Eq. (1) are all of the same sign.

Nevertheless, the idea behind PAs is general and it
can be used to propose new approximations. For exam-
ple, one can choose a parameterized analytic function
E(F ) = E({hi};F ) to approximate E(F ), fixing the pa-
rameters {hi} so that the Taylor series for E(F ) is equal
to the asymptotic series of E(F ) up to the desired order –
for an example see Ref. [29]. Since here we are concerned
with the determination of Γ(F ), we initially aimed for
a function E(F ) with the following desirable properties:
(i) it is a complex function of real F , with the ability to
mimic the branch cut structure discussed above; (ii) it
can be built from low-order perturbation theory, as PAs
are built; (iii) it is amenable to generalization by be-

ing a member of a more general family of “higher order”
functions; and (iv) is itself general and flexible includ-
ing many other functions as particular cases. A possible
candidate satisfying all desirable properties (i)-(iv) is the
Gauss hypergeometric function 2F1(h1, h2, h3;h4f). It
satisfies (i) and (ii) as it is complex and has a branch
cut for h4f > 1, and it contains at most four parame-
ters so it can be built from the coefficients e1−4. It also
satisfies condition (iii) because there are hypergeometric
functions of higher order, pFq, which generalize to the
so-called Meijer-G function [30]. Finally, 2F1 satisfies
condition (iv) as it is well known that many functions
are particular cases of 2F1.
The Taylor series for 2F1 is given by:

2F1(h1, h2, h3;h4f) =

∞
∑

n=0

(h1)n(h2)n
n!(h3)n

hn
4f

n, (2)

where (hi)n = hi(hi + 1) · · · (hi + n − 1). To obtain the
hi, one equates each order in the asymptotic series for
E(F ) with the corresponding order in the Taylor series
for E(F ) to obtain a system of four equations with four
unknowns

en =
(h1)n(h2)nh

n
4

(h3)nn!
, 1 ≤ n ≤ 4. (3)

Once the coefficients hi are determined, hypergeometric
approximations E(F ) ≈ E(F ) for, e.g., the Stark case
can be constructed as:

E(F ) = −1

2
2F1(h1, h2, h3, h4f), (4)

where 2F1 is evaluated “on the cut” by taking the limit
as ImF → ±0, and choosing the sign so that ImE(F ) < 0
and Γ > 0, consistent with the usual outgoing-wave
boundary conditions. We apply this scheme to three
Hamiltonians from single-particle quantum mechanics,
with divergent divergent perturbation expansions: the
Stark Hamiltonian, Ĥ = −∇2/2−1/r+Fz, with asymp-
totic series expansion described [16, 17] by Eq. (1); the
cubic one-dimensional anharmonic oscillator with real
perturbation [31], Ĥ = −(∂2/∂x2)/2+λx2/2+Fx3, and
imaginary perturbation [32, 33], Ĥ = −(∂2/∂x2)/2 +
λx2/2 + iFx3. Here, λ is the force constant taken
as 1/4 in the numerical analysis below. Furthermore,
the perturbed ground-state eigenvalue has Γ(F ) 6= 0
in the first two cases, while in the third case one has
a PT -symmetric [32, 33] Hamiltonian with Γ(F ) =
0. For simplicity, all equations are written assum-
ing the Stark Hamiltonian problem. We stress that
Eqs. (3) are nonlinear and mutiple solutions are pos-
sible. For these examples, however, only two solutions
are found (h1, h2, h3, h4) and (h2, h1, h3, h4), which cor-
respond to the same hypergeometric function, as follows
from Eq. (2). The numerical values of h1−4 obtained
for the Stark problem are h1 ≈ 0.319, h2 ≈ −0.162,
h3 ≈ 118.193 and h4 ≈ 164961 [34].
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FIG. 1: (Color online) Real ∆(F ) and imaginary Γ(F ) part of the perturbed ground state energy of: (a) the Stark Hamiltonian
as a function of the electric field strength F ; (b) the anharmonic oscillator with real perturbation Fx3; and (c) the anharmonic
oscillator with imaginary perturbation iFx3. We compare numerically exact values (dots) [31, 32, 35], with the fourth-order
hypergeometric approximant 2F1 (solid line) and Padé approximants (dashed line). In all three cases the 2F1 approximant
improves over Padé approximants [of the same-order in panels (a) and (b); and of much higher order in panel (c)] for the
calculation of both ∆(F ) and Γ(F ).

Figure 1 shows ∆(F ) [top panels] and Γ(F ) [bottom
panels] as a function of F for these three Hamiltoni-
ans. In Fig. 1(a), values of ∆(F ) and Γ(F ) are shown
for the Stark Hamiltonian. Exact results taken from
Ref. [35] are compared with those calculated using the
simple hypergeometric approximant 2F1 and the same-
order 2/2 Padé approximant. The simple 2F1 approxi-
mant introduced here provides excellent approximations
to both ∆(F ) and Γ(F ), while the 2/2 Padé approxi-
mant fails to approximate either quantity. In Fig. 1(b)
a similar comparison is made for the cubic anharmonic
oscillator with real perturbation, taking the exact numer-
ical values from Ref. [31]. Once again the 2F1 approx-
imant dramatically outperforms the 2/2 Padé approx-
imant. Finally, in Fig. 1(c) we see the results obtained
from the cubic anharmonic oscillator with imaginary per-
turbation. In this case, both Padé and exact results are
taken from Ref. [32]. The Padé results have been ob-
tained in Ref. [32] by means of a Cesaro sum of the en-
ergies obtained from the 22/22 and 22/23 Padé approx-
imants. Figure 1(c) shows that 2F1 outperforms large-
order Padé (N = 44) for the calculation of ∆(F ), and
they both reproduce the exact value of Γ(F ) = 0. There-
fore the hypergeometric approximant offers an excellent
fourth-order approximation, likely to outperform Padé
approximants of much higher order. Note that a single
hypergeometric approximant yields the results shown in
Fig. 1(b) and 1(c), just by replacing F by iF .

A comparison between the hypergeometric approxi-
mant and PAs is admittedly not very fair. To obtain
Γ(F ) 6= 0 from PAs, the standard procedure [17] thus far
has been to employ the BP method [2]. In this method,

one starts from a large number of coefficients en and
evaluates the Borel-transformed coefficients bn = en/n!,
which are then employed to calculate PAs BL/M (f)

and Laplace transforms FL/M (f) =
∫

∞

0
dtBL/M (ft)e−t,

leading to the BP approximation, E(F ) ≈ − 1
2
FL/M (f).

The Borel method removes n! from the coefficients, sums
the transformed series, and puts n! back into the series by
means of the Laplace transform. The essence of the BP
method [2] is to perform AC on the Borel transformed co-
efficients and use the resulting analytic function to evalu-
ate the Laplace transform. While the BP method allows
accurate calculations of Γ(F ) from the perturbation se-
ries, it also requires [17] very large orders of perturbation
theory that are unavailable in practice.
In the BP method, the analytic function is a PA. In

the same spirit, we use hypergeometric functions as an-
alytic functions to construct the Borel-hypergeometric
method, by performing hypergeometric AC of the Borel-
transformed series, calculating the hi coefficients that
define the hypergeometric function 2F1(h1, h2, h3;h4f)
from en/n!. The Borel-hypergeometric approximation,
E(F ) ≈ E(F ), is then

E(F ) ≈ −α

2

∫

∞

0

dt e−αt
2F1(h1, h2, h3, αh4ft), (5)

and α =
√
i specifies the integration contour [17]. An ex-

pression somewhat similar to Eq. (5) was used in Ref. [6]
as the starting point to construct convergent strong-
coupling expansions, while requiring the knowledge of
both en→∞ and E(F → ∞).
We now apply the Borel-hypergeometric method to ap-

proximate ∆(F ) and Γ(F ) for the same three Hamilto-
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Once-subtracted

FIG. 2: (Color online) The same quantities as in Fig. 1, but calculated using the fourth-order hypergeometric approximant 2F1

(solid line), Borel-hypergeometric method (dashed line) in Eq. (5) and the numerically exact values taken from the literature
(dots) [31, 32, 35]. The Borel-hypergeometric and hypergeometric methods are in excellent agreement, both yielding excellent
approximations to both ∆(F ) and Γ(F ) in all three cases.

nians studied in Fig. 1. Figure 2 demonstrates that in
all three problems considered the Borel-hypergeometric
method gives excellent approximations to both ∆(F ) and
Γ(F ), and reproduces the results given by the hyperge-
ometric approximant. Comparing Borel-hypergeometric
and hypergeometric approximants reveals that the hy-
pergeometric approximant is Borel consistent to a very
good approximation. It is well known that a conver-
gent sum and its Borel resummation give the same re-
sult. The hypergeometric approximations discussed here
satisfy this desirable property to a good approximation.
We note that in Fig. 2(b) the Borel-hypergeometric sum
diverges for very small F . This is not a problem since
the simple hypergeometric approximant is already well-
behaved for F → 0. Alternatively, one can calculate one
extra order of perturbation theory and build the Borel-
hypergeometric approximant from the coefficients of the
once-subtracted series, [E(F ) − E(0)]/(e1f). As shown
in Fig. 2(b) that procedure mitigates this minor problem,
while leading to similarly accurate overall results.

We emphasize that the hypergeometric and Borel-
hypergeometric approaches are fourth-order approxima-
tions and thus much simpler and less expensive than the
widely used BP method [2], while being of comparable
accuracy. For instance, in the case of the Stark Hamilto-
nian with F = 0.4 a.u., some 70 orders of perturbation
theory were required in Ref. [17] by the BP scheme to
produce E(F = 0.4) = −0.608 − 0.200i, which can be
contrasted with our result E(F = 0.4) = −0.609−0.212i,
and with numerically exact data [35] E(F = 0.4) =
−0.613 − 0.205i. For the Stark Hamiltonian, F = 0.4
a.u. ≃ 2 × 103 MV cm−1 corresponds to a rather large
electric field. We have also checked (data not shown) that

2F1 performs better than fifth-order quadratic-PA’s.

It is easy to understand why the hypergeometric and
Borel-hypergeometric method dramatically outperform
the traditional BP method [2]. To obtain Γ(F ) 6= 0 one
needs approximants with a branch cut in the complex F
plane with branch points at F = 0 and F = ±∞ [13, 19].
Padé approximants typically have both poles and zeroes
on the real F axis, thereby lacking the correct analytic
structure of E(F ) that is essential for rapid convergence.
The function 2F1(h1, h2, h3;h4f) has a branch cut run-
ning from h4f = 1 to h4f = ∞. When calculating
{hi} from the low-order coefficients e1, . . . , e4, we typ-
ically obtain a large value for h4, thus mimicking the
correct branch cut structure in E(F ), as illustrated in
Fig. 3. We note that the tip of the cut is not exactly
positioned, but for the examples considered this poses
no real problems as h4 is very large and Γ is extremely
small. Nevertheless, hypergeometric approximants with
exactly positioned cuts are possible and might be needed
in some cases [36].

Our study illustrates the potentially immense advan-
tages of supplementing the low-order information with an
AC function able to mimic the convergence-limiting sin-
gularity structure on E(F ). The approach put forward
here has potential applications in nonequilibrium many-
body perturbation theory [24] for condensed matter sys-
tems where partial resummations are often used [37–
41]. Such approximations are uncontrolled because an
error is “summed” to all orders (starting from second or-
der) [25, 41]. An alternative could be to build exact dia-
grammatic series—including vertex corrections—at low
orders[10, 11], and then use a suitable AC technique.
In Ref. [42] the approach put forward in this letter has
been used to obtain the critical exponents for the two-
dimensional Bose-Hubbard model. These results should
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FIG. 3: (Color online) Imaginary part of 2F1(h1, h2, h3, h4f)
calculated for the Stark Hamiltonian in the complex F -plane.
The built-in branch cut extends from (h4)

−1 to ∞, and is
essential to obtain Γ(F ) 6= 0. The hi are determined from the
first four coefficients of the perturbation expansion. These
yield h4 ≈ 164961.

encourage interested readers to explore perturbation the-
ory beyond the second order, to study the analytic struc-
ture in the complex coupling-constant plane and to try
hypergeometric functions as approximants.

In conclusion, by analogy with traditional Padé and
Borel-Padé techniques we have developed a fourth-order
hypergeometric approximant and its natural Borel ex-
tension which are able to mimic convergence-limiting
branch-cuts, evade the calculation of a large number of
coefficients, and dramatically outperform standard Padé
and Borel-Padé approaches. Nonperturbative physics
can be obtained from the low-order coefficients of a di-
vergent perturbation series, as long as a carefully tailored
analytic continuation technique is implemented.
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