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Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum
have been testbeds for analytic and numerical relativity for decades, not least because symmetry
ensures that such configurations are equilibrium solutions to the spin-precession equations. In this
work, we show that these solutions can be unstable when the spin of the higher-mass black hole
is aligned with the orbital angular momentum and the spin of the lower-mass black hole is anti-
aligned. Spins in these configurations are unstable to precession to large misalignment when the
binary separation r is between the values rud± = (

√
χ1 ±√qχ2)4(1− q)−2M , where M is the total

mass, q ≡ m2/m1 is the mass ratio, and χ1 (χ2) is the dimensionless spin of the more (less) massive
black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur
in the strong-field regime near merger. We describe the origin and nature of the instability using
recently developed analytical techniques to characterize fully generic spin precession. This instability
provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing
significant spin precession prior to merger affecting both gravitational-wave and electromagnetic
signatures of stellar-mass and supermassive binary black holes.

PACS numbers: 04.25.dg, 04.70.Bw, 04.30.-w

Introduction. – Black holes (BHs) have been ob-
served in two distinct regimes: stellar-mass BHs
(5M� . m . 100M�) accrete from companions in X-ray
binaries [1–3], while supermassive BHs shine as quasars
or active galactic nuclei (AGN) [4, 5]. Both types of
BHs naturally occur in binaries: the massive stellar pro-
genitors of stellar-mass BHs are typically formed in bi-
naries, while supermassive BHs form binaries following
the mergers of their host galaxies [6]. Gravitational ra-
diation circularizes the orbits of these binaries [7] and
causes them to inspiral and eventually merge, making
them promising sources of gravitational waves (GWs) for
current and future GW detectors [8–15]. The spins of
these binary BHs need not be aligned with their orbital
angular momentum: stellar-mass BHs may recoil during
asymmetric collapses tilting their spins with respect to
the orbital plane [16–18], while the initial orbital plane
of supermassive BH binaries reflects that of their host
galaxies and is thus independent of their spin. Gravi-
tational effects alone will not align the BH spins with
the orbital angular momentum [19, 20], but astrophys-
ical mechanisms exist that drive the BH spins towards
alignment in both regimes. The first BH to collapse in
stellar-mass BH binaries may accrete in a disk from its
as yet uncollapsed companion, while both members of
a supermassive BH binary may accrete from a common

circumbinary disk. Warps in these accretion disks can
align the BH spins with the orbital angular momentum
[21–23], but if the initial misalignment between the BH
spin and accretion disk is greater than 90◦, the BH may
instead be driven into anti-alignment [24].

Misaligned spins cause the orbital angular momentum
to precess [25–27], modulating the emitted GWs [28].
Spin misalignment is both a blessing and a curse for GW
data analysis: it increases the parameter space of tem-
plates needed to detect GWs via matched filtering but
also breaks degeneracies between estimated parameters
in detected events [29]. Misaligned spins at merger can
generate large gravitational recoils [30–32], ejecting su-
permassive BHs from their host galaxies. Spin precession
may also be responsible for the observed X-shaped mor-
phology of AGN radio lobes [33, 34]. Given the impor-
tance of spin misalignment, it is worth investigating the
robustness of aligned spin configurations. In the general
case that the BHs have unequal masses, there are four
distinct (anti-)aligned configurations, which we refer to
as up-up, up-down, down-up, and down-down. The direc-
tion before (after) the hyphen describes the more (less)
massive BH and up (down) implies (anti-)alignment of
the spin with the orbital angular momentum. By sym-
metry, all four configurations are equilibrium solutions to
the orbit-averaged spin-precession equations [27], but are
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FIG. 1. Effective-potential loops ξ±(S) for binary BHs with mass ratio q = 0.9, dimensionless spins χ1 = 1, χ2 = 0.14, and total
angular momentum J = |L+ S1 − S2|, corresponding to the up-down configuration. For binary separations r > rud+ ' 337M
(left panel), the up-down configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle). At
intermediate separations rud+ > r > rud− ' 17M (middle panels), misaligned binaries with the same value of the conserved ξ
exist along the dashed red line. Perturbations δJ , δξ will cause S to oscillate between the points S± where this line intersects
the loop, making the up-down configuration unstable. For r < rud− (right panel), the up-down configuration is again a stable
extremum, now a maximum (marked by the upper triangle). An animated version of this figure is available online at [35].

these solutions stable? To answer this question, we inves-
tigate how the configurations respond to perturbations of
the spin directions using our recently developed approach
for studying generically precessing systems [36, 37]. As
we will demonstrate below, the up-down configuration is
unstable for certain choices of binary parameters, with
significant consequences for GW data analysis and astro-
physics.

Generic spin precession. – Here we briefly summarize the
approach to spin precession described in detail in [36, 37]
using units where G = c = 1. Binary BHs with total
mass M = m1 + m2, mass ratio q = m2/m1 ≤ 1, sym-

metric mass ratio η = q/(1 + q)2, and spins Si = χim
2
i Ŝi

evolve on three distinct timescales: the orbital time
torb = (r3/M)1/2 on which their separation r changes
direction, the precession time tpre = (torb/η)(r/M)
on which the spins and orbital angular momentum
L change direction, and the radiation-reaction time
tRR = (torb/η)(r/M)5/2 on which the magnitudes r and
L decrease due to GW emission. The relative orienta-
tions of the spins are often specified by the two angles
cos θi = Ŝi · L̂ and the angle ∆Φ between the projections
of the two spins onto the orbital plane, all of which vary
on tpre. The spin orientations can equivalently be speci-
fied by the magnitudes of the total spin S = S1 +S2, the
total angular momentum J = L + S, and the projected
effective spin [38, 39] ξ ≡M−2[(1+q)S1+(1+q−1)S2]·L̂.
This specification has the advantage that only S evolves
on tpre, while J evolves on tRR and ξ is conserved
throughout the post-Newtonian (PN) stage of the inspi-
ral (r & 10M) by orbit-averaged 2PN spin precession and
2.5PN radiation reaction [40]. On the precession time,
the spin magnitude S simply oscillates back and forth

between the two roots S± of the equation ξ = ξ±(S),
where

ξ±(S) = {(J2 − L2 − S2)[S2(1 + q)2 − (S2
1 − S2

2)(1− q2)]

± (1− q2)
√

[J2 − (L− S)2][(L+ S)2 − J2]

×
√

[S2 − (S1 − S2)2][(S1 + S2)2 − S2]}
/

(4qM2S2L) ,
(1)

are the effective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of
Eq. (1) changing on tpre; in the absence of radiation re-
action, the spins return to their initial relative orientation
after a time τ(L, J, ξ) during which L, S1, and S2 pre-
cess about J by an angle α(L, J, ξ). The two potentials
ξ±(S) form a closed loop in the Sξ-plane, implying that
the two roots S± coincide at the extrema ξmin,max(L, J)
of the loop. At these extrema, also known as spin-orbit
resonances [19], S does not oscillate and L, S1, and S2

all remain coplanar on the precession time.
Stability of aligned configurations. – We begin with
the up-up and down-down configurations, for which
J = |L ± (S1 + S2)|, respectively. According to Eq. (1),
the effective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
oscillate consistent with conservation of J and ξ. Now
consider the down-up (up-down) configurations for which
J = |L − S1 + S2| (J = |L + S1 − S2|). The effective-
potential loop ξ±(S) encloses a nonzero area for these
values of J , implying that oscillations in S are possi-
ble, except at the extrema ξmin,max. Since the spins are
anti-aligned with each other in both configurations, S is
minimized at Smin = |S1 − S2| and both configurations
sit on the leftmost point of the loop, where ξ+(S) and
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FIG. 2. The angles cos θi = Ŝi · L̂ for spin-orbit resonances
[extrema of ξ±(S)] for BHs with q = 0.95, χ1 = 0.3, and
χ2 = 1. The solid (dashed) curves indicate the ∆Φ = 0 (π)
family and the five curves for each family correspond to binary
separations r/M = 3000, 720, 170, 40, and 10. The up-down
configuration (bottom right corner) belongs to the ∆Φ = 0
family for r > rud+ ' 2149M , to the ∆Φ = π family for r <
rud− ' 13M , and is unstable for intermediate values rud− <
r < rud+. An animated version of this figure is available
online at [35].

ξ−(S) coincide. Whether this point is also an extremum
ξmin,max depends on the slopes of these two functions
at that point. Both slopes are always negative for the
down-up configuration, implying that it is a maximum
ξmax and thus a spin-orbit resonance like the up-up and
down-down configurations. At large binary separations
r, the slopes of ξ±(S) are both positive for the up-down
configuration, making it a minimum ξmin. However, be-
low rud+ given by

rud± =
(
√
χ1 ±√qχ2)4

(1− q)2 M , (2)

the slope of ξ−(S) becomes negative and up-down is no
longer an extremum of the effective-potential loop, as
seen in Fig. 1. At separations below rud−, the slope of
ξ+(S) also becomes negative and up-down is again an
extremum, this time a maximum ξmax. Misaligned BHs
with the same values of J and ξ as the up-down con-
figuration but S > Smin exist in the intermediate range
rud− < r < rud+, as shown by the dashed red line. These
misaligned BHs have an infinite precessional period τ :
they exponentially approach the up-down configuration
on the precession time tpre but never reach it.

The evolving relationship between the up-down con-
figuration and the spin-orbit resonances parameterized
by the angles θi is seen in Fig. 2. The solid curves
show the ∆Φ = 0 resonances [ξmin(J)] for separations
10M ≤ r ≤ 3000M , while the dashed curves show the
∆Φ = π resonances [ξmax(J)]. The up-down configura-

0.2 0.4 0.6 0.8 1.0 1.2 1.4

J/M 2

−1.0

−0.5

0.0

0.5

1.0

ξ

q = 0.8
χ1 = 1
χ2 = 1

r = 10M
rud+ > r > rud−

up− up

down− down

up− down

down− up
0.885 0.890 0.895 0.900

0.105

0.110

0.115

0.120

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

d
J
/d
L

FIG. 3. Precession-averaged radiation reaction dJ/dL as a
function of J and ξ for binaries with q = 0.8, χ1 = χ2 = 1, and
separation r = 10M in the unstable region rud− < r < rud+.
Spin-orbit resonances including the up-up, down-down, and
down-up configurations are extrema of ξ±(S) and constitute
the boundary of the allowed region. All four aligned con-
figurations are maxima where dJ/dL = 1, but the unstable
up-down configuration (shown in the inset) is a cusp. An
animated version of this figure is available online at [35].

tion is located in the bottom right corner of this figure.
For r > rud+, the up-down configuration lies on the solid
curves and belongs to the ∆Φ = 0 family, but for smaller
separations these curves detach from the bottom right
corner, and thus up-down is no longer a minimum of
ξ±(S). The dashed curves indicating the ∆Φ = π fam-
ily migrate to the right with decreasing separation and
reach the bottom right corner, making the up-down con-
figuration a maximum of ξ±(S), for r < rud−. The up-up
and down-down configurations (top right and bottom left
corners) belong to both resonant families, reflecting the
degeneracy of the effective-potential loop as a single point
that is both minimum and maximum. The down-up con-
figuration (top left) always belongs to the ∆Φ = π family
and is thus a maximum ξmax.

The stability of a system is determined by its re-
sponse to perturbations, in this case to the spin angles
(δθ1, δθ2, δ∆Φ) or equivalently to the angular momenta
(δS, δJ, δξ). After such a perturbation, configurations
that are extrema of ξ±(S) (all aligned configurations ex-
cept up-down for rud− < r < rud+) will undergo oscil-
lations in S (and thus the three spin angles) that are
linear in the perturbation amplitude, and have a period
τ that is independent of this amplitude. This is a sta-
ble response equivalent to that of a simple harmonic os-
cillator. The response of the up-down configuration for
rud− < r < rud+ is very different, as seen in the middle
panels of Fig. 1: S oscillates between the turning points
S± independent of the perturbation amplitude, but the
period τ of these oscillations – as predicted by Eq. (27)
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of [37] – diverges logarithmically as this amplitude ap-
proaches zero. This is an unstable response: the time it
takes for a zero-energy particle with dx/dt < 0 to travel
from finite x0 to δx in the unstable potential V = − 1

2kx
2

similarly diverges logarithmically with δx.

A perturbative analysis of nearly aligned configura-
tions [41] can identify that perturbations can oscillate
at complex frequencies (indicating an instability) in the
same region rud− < r < rud+ found here, but such analy-
sis cannot predict the amplitude of these perturbations or
their response to precession-averaged radiation reaction.

Radiation reaction. – We have shown that for
rud− < r < rud+, spin configurations with J and ξ in-
finitesimally close to the up-down configuration can ex-
perience finite-amplitude oscillations in S and the angles
θ1, θ2, and ∆Φ. We now investigate how these configu-
rations evolve on the longer radiation-reaction time tRR.
Since ξ is conserved throughout the inspiral and L mono-
tonically decreases at 2.5PN order, the only challenge is
to evolve J . In [36, 37] we derived a precession-averaged
expression for dJ/dL, a contour plot of which is shown
in Fig. 3. The shaded region shows the allowed values of
J and ξ for this mass ratio, spin magnitudes, and binary
separation. The spin-orbit resonances, being extrema of
ξ±(S), constitute the boundaries of this region. The up-
up, down-down, and down-up configurations, being spin-
orbit resonances, lie on these boundaries. At rud+, the
up-down configuration detaches from the right bound-
ary of this region [it stops being a minimum of ξ±(S)]
and begins to migrate leftwards through the allowed re-
gion, eventually reattaching to the left boundary at rud−
[where it becomes a maximum of ξ±(S)]. This is just an
alternative visualization of the four panels of Fig. 1.

For all four aligned configurations, J and L are aligned
so dJ/dL = 1 is maximized. However, the nature of
these maxima is very different for the stable and un-
stable configurations. For the stable configurations, the
partial derivatives of dJ/dL with respect to J and ξ re-
main finite, implying that neighboring points separated
by (δJ, δξ) slowly drift away at a rate that scales linearly
with these infinitesimal quantities. The unstable config-
uration however is a cusp where these partial derivatives
approach ±∞, depending on whether this point in the
Jξ-plane is approached from below or above. Neighbor-
ing points (experiencing large-amplitude oscillations in
S, as seen in the middle panels of Fig. 1) rapidly deviate
from the up-down configuration as it sweeps across the
allowed region. This is an essential point: even if the
stability of the up-down configuration is restored in the
PN regime (rud− > 10M), radiation reaction during the
inspiral between rud± will drive BHs initially in this con-
figuration to large misalignments prior to merger. The
migration of the up-down configuration through the Jξ-
plane also reconciles the instability with the empirical
result that isotropic spin distributions remain isotropic
during the inspiral [19, 20]: although nearby binaries
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FIG. 4. Normalized GW Fourier amplitude h̃ (cf. Ref. [41])
as a function of orbital frequency f and binary separation r
during the inspiral of BHs with q = 0.75 and χ1 = χ2 = 0.9.
At the initial separation r = 1000M , the spins are nearly
in the up-down configuration, but this configuration becomes
unstable below rud+ ' 157M , after which large precession-
induced modulations occur at frequencies accessible to GW
detectors.

may indeed be left behind, the unstable configuration
will always encounter a fresh supply, until it is restored
to stability at the left edge of the allowed region.
GW astronomy. – Binaries with separations in the un-
stable region between rud± emit GWs with frequencies in
the range fud± ' 6.4×104Hz(M/M�)−1(1−q)3/(√χ1±√
qχ2)6, within or below the sensitivity band of existing

and planned GW detectors [8–15]. In Fig. 4, we show the
waveform of one such binary initially near the up-down
configuration before entering the unstable region. Once
the binary crosses the threshold at rud+, its waveform
develops large-amplitude precessional modulation on the
precession time tpre. The amplitude of this modulation
is independent of the initial deviation from the up-down
configuration: it is set by the finite-amplitude oscillations
in S seen in the middle panels of Fig. 1. Modulation oc-
curs on two distinct timescales associated with the pre-
cession of L in a frame aligned with J. In this frame the
direction of L is specified by the polar angle cos θL = L̂·Ĵ
and the azimuthal angle ΦL in the plane perpendicular
to J. The longer of these timescales is τ (the period of
oscillations in θL), while the shorter timescale is (2π/α)τ
(the precession-averaged time for ΦL to change by 2π)
[36, 37]. Measuring this modulation could yield insights
into the astrophysical origins of binary BHs [18, 37]. Spin
precession could also affect the electromagnetic counter-
parts to BH mergers [42, 43] and the probability of eject-
ing a supermassive BH from its host galaxy [30–32, 44].
We look forward to confronting these predictions with
observations in the dawning age of GW astronomy.
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[42] M. Milosavljević and E. S. Phinney, ApJ 622, L93 (2005),
astro-ph/0410343.

[43] A. Loeb, Physical Review Letters 99, 041103 (2007),
astro-ph/0703722.

[44] M. Kesden, U. Sperhake, and E. Berti, ApJ 715, 1006
(2010), arXiv:1003.4993 [astro-ph.CO].

[45] J. D. Hunter, Computing in Science and Engineering 9,
90 (2007).

mailto:d.gerosa@damtp.cam.ac.uk
mailto:kesden@utdallas.edu
mailto:rossma@rit.edu
mailto:aklein@olemiss.edu
mailto:eberti@olemiss.edu
mailto:u.sperhake@damtp.cam.ac.uk
mailto:daniele.trifiro@ligo.org
http://dx.doi.org/10.1126/science.147.3656.394
http://dx.doi.org/10.1038/235271b0
http://dx.doi.org/10.1038/235037a0
http://dx.doi.org/10.1038/223690a0
http://dx.doi.org/10.1038/287307a0
http://dx.doi.org/10.1038/287307a0
http://dx.doi.org/10.1103/PhysRev.131.435
http://dx.doi.org/10.1103/PhysRev.131.435
http://dx.doi.org/10.1088/0264-9381/27/8/084006
http://dx.doi.org/10.1088/0264-9381/27/8/084006
http://dx.doi.org/10.1142/S0218271813410101
http://dx.doi.org/10.1142/S0218271813410101
http://dx.doi.org/10.1088/0264-9381/29/12/124007
http://dx.doi.org/10.1088/0264-9381/29/12/124007
http://arxiv.org/abs/1111.7185
http://dx.doi.org/ 10.1088/0264-9381/27/19/194002
http://dx.doi.org/ 10.1088/0264-9381/27/19/194002
http://dx.doi.org/10.1088/0264-9381/30/22/224010
http://dx.doi.org/10.1088/0264-9381/30/22/224010
http://arxiv.org/abs/1309.7392
http://dx.doi.org/10.1017/pasa.2012.017
http://arxiv.org/abs/1210.6130
http://arxiv.org/abs/0909.1058
http://dx.doi.org/10.1088/0264-9381/30/22/224009
http://dx.doi.org/10.1088/0264-9381/30/22/224009
http://dx.doi.org/10.1086/309400
http://arxiv.org/abs/arXiv:astro-ph/9911417
http://arxiv.org/abs/arXiv:astro-ph/9911417
http://dx.doi.org/10.1046/j.1365-8711.2002.05038.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05038.x
http://arxiv.org/abs/arXiv:astro-ph/0201220
http://dx.doi.org/ 10.1103/PhysRevD.87.104028
http://arxiv.org/abs/1302.4442
http://dx.doi.org/10.1103/PhysRevD.70.124020
http://arxiv.org/abs/astro-ph/0409174
http://arxiv.org/abs/astro-ph/0409174
http://dx.doi.org/10.1086/518769
http://dx.doi.org/10.1086/518769
http://arxiv.org/abs/astro-ph/0703054
http://dx.doi.org/10.1086/181711
http://dx.doi.org/10.1086/181711
http://dx.doi.org/10.1088/0004-637X/774/1/43
http://arxiv.org/abs/1307.6569
http://dx.doi.org/10.1093/mnras/stv1214
http://dx.doi.org/10.1093/mnras/stv1214
http://arxiv.org/abs/1503.06807
http://dx.doi.org/10.1111/j.1365-2966.2005.09378.x
http://arxiv.org/abs/astro-ph/0507098
http://dx.doi.org/10.1007/BF00756587
http://dx.doi.org/10.1007/BF00756587
http://dx.doi.org/10.1103/PhysRevD.31.1815
http://dx.doi.org/10.1103/PhysRevD.31.1815
http://dx.doi.org/10.1103/PhysRevD.52.821
http://arxiv.org/abs/gr-qc/9506022
http://arxiv.org/abs/gr-qc/9506022
http://dx.doi.org/10.1103/PhysRevD.49.6274
http://dx.doi.org/10.1103/PhysRevD.49.2658
http://dx.doi.org/10.1103/PhysRevD.49.2658
http://arxiv.org/abs/gr-qc/9402014
http://dx.doi.org/10.1103/PhysRevLett.98.231101
http://arxiv.org/abs/gr-qc/0702052
http://dx.doi.org/10.1103/PhysRevLett.98.231102
http://arxiv.org/abs/gr-qc/0702133
http://arxiv.org/abs/gr-qc/0702133
http://dx.doi.org/10.1086/516712
http://arxiv.org/abs/gr-qc/0701164
http://dx.doi.org/10.1126/science.1074688
http://arxiv.org/abs/astro-ph/0208001
http://dx.doi.org/10.1088/0004-637X/697/2/1621
http://arxiv.org/abs/0704.1968
http://dx.doi.org/10.1103/PhysRevLett.114.081103
http://dx.doi.org/10.1103/PhysRevLett.114.081103
http://arxiv.org/abs/1411.0674
http://arxiv.org/abs/1506.03492
http://dx.doi.org/10.1103/PhysRevD.64.124013
http://arxiv.org/abs/gr-qc/0103018
http://arxiv.org/abs/gr-qc/0103018
http://dx.doi.org/10.1103/PhysRevD.78.044021
http://arxiv.org/abs/0803.1820
http://dx.doi.org/10.1103/PhysRevD.81.084054
http://dx.doi.org/10.1103/PhysRevD.81.084054
http://arxiv.org/abs/1002.2643
http://dx.doi.org/10.1103/PhysRevD.88.124015
http://dx.doi.org/10.1103/PhysRevD.88.124015
http://arxiv.org/abs/1305.1932
http://dx.doi.org/10.1086/429618
http://arxiv.org/abs/astro-ph/0410343
http://dx.doi.org/10.1103/PhysRevLett.99.041103
http://arxiv.org/abs/astro-ph/0703722
http://dx.doi.org/10.1088/0004-637X/715/2/1006
http://dx.doi.org/10.1088/0004-637X/715/2/1006
http://arxiv.org/abs/1003.4993
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55

	Precessional instability in binary black holes with aligned spins
	Abstract
	References


