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We propose that impurities in a Bose-Einstein condensate (BEC) in a multimode cavity transversely pumped
by a laser form an experimentally accessible and analytically tractable model system for the study of impurities
solvated in correlated liquids and the breakdown of linear response theory. As the strength of the coupling
constant between the impurity and the BEC is increased, which is possible through Feshbach resonance methods,
the impurity passes from a large to a small polaron state, and then to an impurity-soliton state. This last transition
marks the breakdown of linear response theory.

It is well known that ultracold atomic physics provides real-
izations of interesting quantum many-body systems [1–3]. In
particular, the emergence of spatial order and other forms of
spontaneous symmetry breaking in quantum systems can be
studied in BECs confined to transversely laser-pumped cavi-
ties [4, 5]. We focus on the problem of an impurity in a corre-
lated quantum liquid near a continuous (or weakly first-order)
symmetry breaking transition. The role of quantum fluctua-
tions on impurity solvation and transport in correlated liquids
like water [6] is currently the subject of active debates in the
physical chemistry literature. The failure of linear-response
theory plays a central role in these debates [7].

The physics of impurities in ultracold quantum gases [8–
10] and in uniform BECs has already been well explored
[11–16]. The interaction between a (neutral) impurity and
the Bogoliubov excitations of the BEC maps in the contin-
uum limit onto the so-called Fröhlich Hamiltonian [17–20],
a linear-response theory that has been extensively applied to
charged impurities in polarizable media, or polarons. Such
a “Bose-polaron” can undergo a transition [21] from a large
polaron state, which is well described by the Fröhlich contin-
uum theory, to a small polaron state, in which the impurity is
self-trapped on length-scales of the order of the inter-particle
spacing of the medium [22, 23] .

In a transversely pumped multimode cavity, a BEC under-
goes a spontaneous phase transition from the uniform state to
a state in which the density of the condensate is periodically
modulated. This transition is described by a quantum version
of the Landau-Brazovskii (QLB) theory for fluctuation-driven
first-order phase transitions [5]. In this Letter we will com-
bine the Fröhlich Hamiltonian description for impurities and
the QLB theory for symmetry breaking in BECs to investigate
the fate of a BEC polaron near the onset of spontaneous posi-
tional ordering, and determine whether impurities in a BEC in
a multimode laser-pumped cavity can serve as a model system
for the study of the effects of quantum fluctuations on solva-
tion and the breakdown of linear response theory.

Model. Our model is defined by a Lagrangian that is the
sum of three terms, respectively referring to the impurity par-
ticle, the condensate, and the lossy cavity. The Lagrangian of
an impurity particle in a BEC condensate is

LI =
1

2
MI|Ṙ|2 −

∫
d3r V (R− r)ρ(r, t), (1)

with MI the impurity mass [24], R(t) the impurity location
and ρ(r) the deviation of the local density of the condensate
from the mean density n0 = N0/V (N0 and V are the number
of bosons in the condensate, and the volume of the system,
respectively). Next, V (r) is the interaction potential between
the impurity particle with the bosons. In the s-wave Fermi
approximation, V (r− r′) = gIBδ

(3)(r− r′) with the pseu-
dopotential gIB = 2πaIB~2/Mr, where aIB is the impurity-
boson s-wave scattering length and Mr the reduced mass of a
impurity-boson binary system. The Lagrangian for the exci-
tations of the BEC reads

LB =
1

V

∑
q

~
ζq

(
|ρ̇q|2 − ω(q)2|ρq|2

)
+ LNL. (2)

Here, ρq(t) =
∫

d3r ρ(r, t)e−iq.r and ζq = n0ε0(q)/~ with
ε0(q) = (~q)2/2MB the free boson dispersion relation. For
a uniform BEC, the dispersion relation is given by the Bo-
goliubov spectrum ~ω0(q) =

√
ε0(q)(ε0(q) + 2n0gBB) with

gBB = 4πaBB~2/MB the pseudopotential for boson-boson
scattering (aBB is the boson-boson scattering length). Non-
linear terms are represented by LNL. For BECs in an op-
tical cavity, both the boson-boson and boson-impurity scat-
tering length are experimentally adjustable parameters. The
Fröhlich Hamiltonian of BEC polarons in uniform conden-
sates is recovered upon canonical quantization of the linear
and quadratic terms of equations (1) and (2).

The modes of a BEC inside a laser-pumped optical cavity,
are mixed Bogoliubov excitations and electromagnetic modes
[4]. The mode frequencies can be depressed and driven to
zero when the frequency of the transverse laser matches that
of a low frequency mode of the cavity. Near the instability
threshold, the spectrum can be approximated as [5]:

ω(q)2 ' ∆ + λR2(|q| − q0)2, (3)

Here, q0 is the wavenumber of the cavity mode, which is of
the order of the inverse of the radius R of the cavity radius
[4, 5]. ∆ is the gap in the harmonic mode spectrum, and
λ is a phenomenological parameter determining the range of
wavevectors over which the depression takes place. It is it-
self determined by the width of the cavity resonance and other
factors [5]. In mean field theory, this Lagrangian describes a
continuous ordering transition at ∆ = 0 from a uniform phase
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to a density-modulated phase with modulation vector q0 and
modulation amplitude proportional to |∆|1/2 [25–27].

The modes of the BEC are coupled to the electromag-
netic modes outside the pumped cavity that act as a reser-
voir. These are included in the form of a distribution of har-
monic oscillators coupled linearly to the BEC modes. Their
Lagrangian is LE =

∑
j

1
2mj{ẋj2−ω2

jx
2
j}−

∑
j,q Cj,qρqxj .

The last term represents a linear coupling of the reservoir
degrees of freedom xj to the modes ρq with coupling con-
stants Cj,q . The nature of the dissipation is determined by
these coupling constants through the oscillator spectral den-
sity Jq(ω) = π

2

∑
j

(
Cj,q

2

mjωj

)
δ(ω − ωj) [28]. We will restrict

ourselves to the simplest case of “Ohmic” dissipation with
Jq(ω) = ηq ω, for low frequencies where ηq is an effective
friction coefficient [29]. The classical equation of motion for
the impurity, obtained by minimizing the total action, is of the
Langevin form with a friction coefficient that diverges at the
MF critical point as η/∆2, where η ≡ ηq0 .

The equilibrium partition function Z of the im-
purity is proportional to the functional integral∫

exp(ST)D[R(t)]D[ρq(t)]D[{xj(t)}] over all degrees
of freedom, which must obey periodic boundary conditions in
“imaginary time” 0 ≤ s ≤ β (β = 1/kBT ). Here, ST is the
Euclidean action. The path integral over the environmental
oscillators can be carried out analytically. The remaining path
integrals over condensate modes and particle trajectories will
be discussed separately for positive and negative ∆.

∆ > 0. For positive ∆, the non-linear terms (LNL) do not
play a significant role. The density fluctuations can then be
integrated out, leading to an effective action for the particle
trajectories:

S ' −
∫ β̃

0

1

2

(
dR̃

ds̃

)2

ds̃− f̃ .

∫ β̃

0

R̃(s̃)ds̃

+ α

∫
d3q̃

∫∫ β̃

0

ds̃ds̃′G(2)
q̃ (|s̃− s̃′|)eiq̃.[R̃(s̃)−R̃(s̃′)], (4)

where α =
g2IBq

3
0ζ~

4(2π)3

(
MI
~2q20

)3

plays the role of a dimensionless
coupling constant while ζ ≡ ζq0 . We shifted to dimensionless
quantities, indicated by tildes, setting MI = ~ = q0 = 1 [30].
An infinitesimal external force f̃ is included in the action, in
order to compute the effective mass. The kernel, for q around
1, is given by

G(2)
q (τ) =

1

β

+∞∑
n=−∞

eiωnτ

χ(q − 1)2 + Γ + γ|ωn|+ ω2
n

. (5)

The summation is over dimensionless Matsubara frequencies
ωn = 2πn/β. The dimensionless distance to the MF critical
point of the QLB is defined here as Γ = ∆(MI/~q2

0)2, the
dimensionless friction coefficient as γ = η(MI/~q2

0), and the
dimensionless field rigidity as χ = λ(Rq0)2(MI/~q2

0)2. The
path integral over the particle trajectories is performed varia-
tionally [31] by defining a suitable Gaussian trial action. For

the present case we choose

St =−
∫ β

0

1

2

(
dR

ds

)2

ds− f .

∫ β

0

R(s)ds

− 1

2

∫∫ β

0

K(|s− s′|)|R(s)−R(s′)|2dsds′, (6)

where the kernel K(τ) = 1
β

∑+∞
n=−∞Kneiωnτ with Kn =

C/(D + γ|ωn|+ ω2
n), is similar to the actual kernel. The con-

stants C and D play the role of variational parameters that
are determined by applying Feynman’s inequality for trial ac-
tions: F (f) ≤ Ft +β−1〈S −St〉t. Here F (f) = −kBT lnZ
is the free energy of the particle. Expectation values are
computed using the Gaussian trial action. For a free parti-
cle with mass M∗ subject to a force f , the second deriva-
tive of the free energy with respect to the applied force equals
∂2F/∂f2|f=0 = ~2β2/12M∗ (in actual units). Using this
as the definition of the effective mass [32] and applying the
trial action gives: M∗ = β2

24

[∑
n>0 gn

]−1
where gn =

[ω2
n + 2

β (K0 − Kn)]−1. In the limit of γ = 0, the kernel

G
(2)
q=1(τ) decays as exp(−

√
Γτ), as in Feynman’s theory of

large polarons [33]. In the opposite limit of γ →∞, quantum
fluctuations of the field are suppressed and only the n = 0
term remains, corresponding to MF classical static structure
factor 1/[χ(q − 1)2 + Γ]. The model reduces in this limit to
the theory of the small polaron [34]. The effective mass in-
deed undergoes a discontinuous jump as a function of increas-
ing coupling constant at a critical value αc '

√
χΓ. From

Fig.1(a), as the damping coefficient is reduced, the effective
mass discontinuity is reduced and goes to zero at a critical
point [35]. According to Fig.1(c), the value of the critical cou-
pling constant for the transition between the large and small
polarons is strongly reduced as one approaches the ordering
transition of the BEC. This is an important result: the transi-
tion from large to small polaron can be induced much easier
in a BEC near the ordering transition [36].

∆ . 0. For negative ∆, the non-linear terms of Eq.2
must be taken into account. It can be shown that only even
terms need to be included [5]: LNL = −u

∫
d3r |ρ(r)|4 −

w
∫

d3r |ρ(r)|6. In order to perform the functional integrals
for this non-linear case, first expand the free energy F [R(s)]
in a Taylor expansion in powers of the impurity pseudopoten-
tial gIB. Then perform, term by term, the functional integrals
using the non-linear action. The zero-order term in the expan-
sion is the partition function of the condensate in the absence
of the particle. The first order term is

F (2)[R(s)] =
−g2

IB

2!

∑
q,n

G(2)
q,ωn

∫∫ β

0

dsds′eiq.[R(s)−R(s′)].

(7)

Here, G(2)
q,ωn is the full two-point Green’s function of the sys-

tem without the impurity. The second order term contains the
full four-point vertex function. These full correlation func-
tions are obtained by a second expansion, now in powers of
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FIG. 1. Effective mass versus dimensionless coupling constant and
(a) dissipation, (b) temperature, and (c) distance from the ordering
transition. Other parameters are set to: (a) β = χ = 100 and Γ = 1,
(b) γ = χ = 100 and Γ = 1, and (c) β = χ = γ = 100. In (a) and
(b) the red dots indicate the critical points where the discontinuity of
the effective mass closes. The dark arrows marked by αth correspond
to the dotted line in (c), i.e. γ, β →∞, at Γ = 1.

LNL. The non-linear terms can be included by the renormal-
ization group method [5]. To one-loop order, this leads to a
renormalization of ∆ to ∆̄ with ∆̄ ' ∆ + Pu ln(∆c/∆̄),
where P ∝ q0

2 and ∆c a high-energy cutoff. The effective
gap ∆̄ of the spectrum remains positive for negative values
of ∆. The renormalized quartic coefficient ū is given by ū '
u 1−uΠ

1+uΠ with Π = P/∆̄; so ū becomes negative if the effective
gap ∆̄ drops below Pu (which happens for slightly negative
∆). The functional integral over the renormalized quadratic
Lagrangian no longer suffers from strong fluctuations, even
for negative ū. For negative ū and decreasing ∆, a first-
order phase transition takes place at ū2 = 4~∆̄w/ζ where the
modulation amplitude changes discontinuously from zero to√

2(~∆̄/ζ|ū|)1/2 The correlation length at the ordering tran-
sition is ξ = R

√
λ/∆̄. This renormalized action SR

T has the
same form as ST but with u and ∆ replaced by the renormal-
ized ones: it can be analyzed by MF theory plus fluctuation
corrections.

The simplest case is the strong damping limit, when the
condensate density modulation can be treated as quasi-static
with respect to the dynamics of the impurity [37]. The
MF minimization of SR

T leads to a radial density modulation
around a static impurity at the origin of the form

ρ(r) = ρ0
sin(q0r)

q0r
exp(−r/ξ). (8)

Generally ρ(r) retains this form if q0r & 1. Using Eq. 8 as a
trial function (with ρ0 the free parameter), leads to non-linear

MF free energy cost FB(ρ0) for radial density modulations:

FB(ρ0) ' 1

π2q3
0

(
2~∆̄(q0ξ)

πζ
|ρ0|2 + ū|ρ0|4 +

w

2
|ρ0|6

)
(9)

where FB(ρ0) has in general the form of a double-well po-
tential with one minimum at ρ0 = 0 and a second near the
modulation amplitude ρ∗ =

√
2|ū|/3w of the ordered phase

(see Fig.2). The second minimum represents a spherically
symmetric deformation of the condensate that interpolates be-
tween the ordered state near the origin and the uniform state
far from the origin. We will refer to this structure as the impu-
rity soliton [38]. At the transition point, the energy cost of the
impurity soliton is F∗ ' 8~

π3q30ζ
(∆̄c|ū|/w)(q0ξ). If the mass

of the impurity is so large (MI � ~2q2
0/ρ0gIB) that quantum

fluctuations of the impurity can be disregarded, the free en-
ergy is FI ' −|gIBρ0| as shown in Fig.2(a):

FB

FI

F

ρ0

ρ0

ρ0

ρ0

F

F

F

F

a1

a2

b1

b2

FIG. 2. Variational free energies as a function of the modulation
amplitude ρ0. The blue, red, and green curves show the condensate
free energy FB(ρ0), impurity free energy FI(ρ0), and the total free
energy F(ρ0) = FB(ρ0) + FI(ρ0), respectively. The absolute min-
ima of total free energies are indicated by black dots in each panel.
(a1,a2) Massive impurities: the free energy of the impurity decreases
linearly with ρ0. For increasing pseudopotential, the absolute mini-
mum shifts from the neighborhood of the Gaussian minimum to that
of the vacuum of the ordered phase—corresponding to a transition
from the small polaron to the impurity soliton. (b1,b2) include the
zero point energy of a bound-state particle, which follows the red
curves. The minimum at ρ0 = 0 corresponds to the large polaron
(b1). For increasing pseudpotentials (b2), there may be transitions
from the large polaron to the small polaron and then to the soliton,
or a single transition directly from the large polaron to the impurity-
soliton.

For small gIB the absolute minimum of F(ρ0) = FB + FI
as a function of ρ0 is proportional to gIB (Fig. 2(a1)), which
corresponds to the small polaron, while there is a metastable
minimum near ρ∗ that corresponds to the impurity soliton. For
larger values of gIB, the absolute minimum jumps near ρ∗ (see
Fig. 2(a2)). The soliton state has lower energy if

8~
π3q3

0ζ
(∆̄c|ū|/w)(q0ξ) . |gIBρ

∗| . (10)

Since ξ ∝ ∆̄−1/2, the impurity soliton state necessarily has a
lower energy than the polaron state for sufficiently large cor-
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relation lengths and hence linear-response theory must break
down for sufficiently large correlation lengths. When typical
values for a pumped BEC are inserted in this inequality, one
finds that the polaron-soliton transition should be experimen-
tally accessible [36].

Next, we include quantum fluctuations of the impurity par-
ticle. The effective Lagrangian is

LI '
1

2
MI|Ṙ|2 + |gIBρ0|

sin(q0R)

q0R
exp(−R/ξ). (11)

The impurity free energyFI is obtained fromLI by integrating
over particle trajectories. This leads to

FI(ρ0) ' −|gIBρ0|+
3

2
~Ω(ρ0) + ... . (12)

The first term is the earlier classical limit while the second
term is the lowest-order correction due to quantum fluctua-

tions. Ω(ρ0) =
(
|gIBρ0|q20

3MI

)1/2

is the natural frequency of the
bound state impurity particle in the effective potential. The
bound state disappears if the right-hand side of Eq.11 is pos-
itive, in which case FI should be set to zero (the flat part of
the red curve in Fig. 2(b1),2(b2)). The small polaron mini-
mum is replaced by a minimum at ρ0 = 0 that corresponds
to the large polaron. The condition for the small polaron to
survive in the presence of the zero-point fluctuations of the

impurity is glB > gc1 =
√

~3∆̄ξ
MIζ

or αc '
√
χΓ̄, which is

just the earlier criterium for self-trapping of a small polaron.
The soliton state is significantly more stable against zero point
fluctuations of the impurity, than the small polaron state.

Quantum fluctuations of the condensate are included by
treating ρ0(t) as a time-dependent coordinate with a kinetic
energy K = (2πξ/q2

0) (dρ0(t)/dt)2. In the double-well po-
tential, the condensate coordinate now can tunnel between the
two minima, allowing for a linear superposition of the small
polaron and soliton states. As the strength of the quantum
fluctuations of the condensate increases, the impurity soliton
state disappears, roughly when the zero point energy of the
condensate coordinate exceeds the depth of the well [39].

|gIB|Large Polaron Small Polaron Soliton

FIG. 3. The different states of the BEC-impurity system are shown
schematically. The blue color indicates the condensate modulation
amplitude while the red cloud indicates the particle. From left to
right, large polaron, small polaron, and the soliton.

An important concern regarding the soliton solutions is
their instabilities in spatial dimensions D > 1, due to Der-

rick’s theorem [40]. We show in Supplementary Materials
(3) that the coupling with the particle’s degree of freedom
stabilizes the soliton. Furthermore, Gaussian fluctuations are
shown to be irrelevant in D ≥ 2.

In summary, the QLB theory predicts that impurity parti-
cles generate a variety of structures as the excitation spectrum
is progressively depressed. Above the MF transition point, the
impurity generates either a large or a small polaron state, de-
pending on the coupling and damping constant. Below the MF
transition—but above the actual ordering transition—a new
state appears: the soliton with a self-trapped impurity particle
(see Fig. 3).

Discussion. In the introduction we posed the question
whether impurities in a BEC can serve as a model system for
the study of the role of quantum fluctuations and the break-
down of linear response theory in solvation theory. We have
found that linear response theory breaks down when a pumped
BEC system becomes increasingly correlated on approach of
a spontaneous symmetry breaking transition, signaled by the
formation of the impurity soliton state. Does this agree, at
least qualitatively, with solvation phenomena in conventional
fluids? It is believed that the breakdown of linear response the-
ory for small ions in water is related to the formation of par-
tially ordered shells of water molecules (“solvation shells”)
around the ion [6]. Water is a highly correlated fluid and
solvation shells indeed could be—crudely—viewed as local
realizations of the low-temperature ordered phase (i.e., ice).
On the other hand, the water molecules surrounding solvated
electrons, with much stronger zero-point fluctuations, remain
disordered. A recent mixed quantum-classical simulation of
electrons solvated in water have a wavefunction that is rela-
tively delocalized (“wet electron”) [7]. According to the the-
ory, an impurity soliton state destroyed by the zero-point mo-
tion of the particle would have to be a large polaron. Quanti-
tative experimental studies of impurities in BECs in pumped
optical cavities that would verify the association of the break-
down of linear response theory with solitons, should, accord-
ing to our estimates [36], be possible and would be of great
value as a model system to study quantum effects on solva-
tion in a system described by a general theory that does not
require detailed assumptions about molecular interactions.
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