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We investigate the properties of a spinless Fermi gas close to a p-wave interaction resonance. We
show that the effects of interaction near a p-wave resonance are captured by two contacts, which are
related to the variation of energy with the p-wave scattering volume v and with the effective range
R in two adiabatic theorems. Exact pressure and virial relations are derived. We show how the two
contacts determine the leading and sub-leading asymptotic behavior of the momentum distribution
(∼ 1/k2 and ∼ 1/k4) and how they can be measured experimentally by radio-frequency and photo-
association spectroscopies. Finally, we evaluate the two contacts at high temperature with a virial
expansion.

Introduction. In the past decade, degenerate Fermi
gases close to scattering resonances have attracted both
theoretical and experimental attention [1]. In the unitary
Fermi gas close to an s-wave resonance, it is understood
that thermodynamic properties are universal [2], depend-
ing only on a single function, called the “contact” [3–6].
Its manifestations in physical properties have been ex-
tensively explored and confirmed in experiments [7–9].
Extension to arbitrary dimensions has been considered
[10, 11]. However, so far contact has only been consid-
ered for s-waves, even though p-wave and higher partial
wave resonances have been explored experimentally [12–
23] and theoretically [24–38].

In this Letter, motivated by the recent radio-frequency
(rf) spectroscopic data near a p-wave Feshbach resonance
in 40K [39], we generalize the concept of contact to p-
waves. In the case of an s-wave resonance, a single con-
tact, which depends on the s-wave scattering length as,
is sufficient for the characterization of universal proper-
ties of the system. For example, the two-body binding
energy is given by ~

2/Ma2s, where M is the mass of the
atoms, and the effective range correction is in general
small [40]. In the case of p-wave scattering, however, the
phase shift is given by cot δ(k) = −1/vk3 − 1/Rk for a
short-range potential, and the effective range R is of fun-
damental relevance, in addition to the scattering volume
v. This can be seen clearly in the binding energy of a
shallow p-wave bound state Eb = ~

2R/Mv [41], depend-
ing crucially on both v and R. As a result, to capture
the universal properties of a spinless Fermi gas around a
p-wave resonance, it is necessary to introduce two con-
tacts, related to the variation of v and R, separately. We
show how two adiabatic theorems [see Eqs. (11) and (12)]
can be established and how the two contacts relate to the
leading (∼ 1/k2) and the sub-leading (∼ 1/k4) terms of
the high-momentum distribution. We also show how the
two contacts can be measured spectroscopically. Finally,
we use a virial expansion to determine each contact as a
function of T , v, and R at high temperature.

General Formulation. To start, let us consider the
two-body problem, where two identical fermions of mass
M interact via a short-range potential U(r) of range
r0, tuned close to a p-wave resonance. The relative
wave function in the p-wave channel can be written as
ψk(r) ≡ χk(r)Y1m(r̂)/r, where m labels the projection of
angular momentum along ẑ-direction and k is the rela-
tive wave vector. For low-energy p-wave scattering, the
radial wave function χk(r) can be expanded in powers of
k2, χk(r) ≡ χ(0)(r) + k2χ(1)(r) + · · · . In the asymptotic
regime where 1/k ≫ r ≫ r0, we fix the normalization
such that the explicit form of χk(r) [and hence χ(0) and
χ(1)] is

χk(r) =

(

1

r
− r2

3v

)

+ k2
(

r

2
− r2

3R
+

r4

30v

)

+ · · · . (1)

It is important to note that the above asymptotic forms
for χ(0,1)(r) also hold for any shallow p-wave bound
state in the corresponding asymptotic regime. Once the
asymptotes are determined through Eq. (1), the short-
range form (r < r0) of χ(0,1)(r) is completely fixed by
two-body physics, due to competition between kinetic
and potential energy and in particular, independent of
the asymptotic wave vector k [5].

To proceed to the many-body case, we first need to
derive two important identities, relating the change of
v and R to that of the variation of the potential U(r).
Consider two slightly different potentials U±(r) = U(r)±
δU(r)/2, each with scattering volume v± and effective
range R±. The radial Schrödinger equation is

(

− ~
2

M

d2

dr2
+ U±(r) +

2~2

Mr2

)

χ±(r) =
~
2k2±
M

χ±(r). (2)

The term 2~2/(Mr2) gives the p-wave centrifugal poten-
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tial. Following the standard procedure [5, 41], we find

δv−1 = −M
~2

∫ ∞

0

dr δU(r)|χ(0)(r)|2, (3)

δR−1 = −2M

~2

∫ ∞

0

dr δU(r)χ(0)(r)χ(1)(r), (4)

where δv−1 = v−1
+ − v−1

− and similarly for δR−1.
Next, consider a spinless Fermi system of total

number N confined in volume Ω with density n ≡
N/Ω ≡ k3F/(6π

2) where kF is the Fermi wave vec-
tor. The two-body density matrix ρ2(r1, r2) ≡
〈ψ†(r1)ψ

†(r2)ψ(r2)ψ(r1)〉, where ψ†(r) creates a fermion
at position r, is Hermitian and can be diagonalized

ρ2(r1, r2) =
∑

α

nαφ
∗
α(r1, r2)φα(r1, r2). (5)

The eigenvalues nα satisfy the condition
∑

α nα = N(N−
1), and the associated pair wave functions {φα(r1, r2)}
form an orthonormal set. In a rotationally invariant sys-
tem, they can be further written as

φα(r1, r2) =
1√
Ωr

exp(iP ·R)ϕjℓ(r)Yℓm(r̂), (6)

where R = (r1 + r2)/2 is the center of mass and r =
r1 − r2 is the relative coordinate and r = |r|. P can
be regarded as the center-of-mass momentum of a pair
and j, ℓ,m label the quantum numbers of the relative
radial direction, the angular momentum, and its ẑ pro-
jection respectively. Here the index α = {P, j, ℓ,m} is
a shorthand for all the quantum numbers that label the
pair wave function. In a single-component Fermi gas, ℓ
must be odd. In the region r → 0, ϕjℓ(r) ∼ rℓ+1; the
p-wave channel has the strongest penetration inside the
interaction potential U(r). As a result, we shall concen-
trate only on the p-wave component, since it gives the
dominant contribution to the interaction energy of the
system.
The pair wave function φα(r1, r2), and hence ϕjℓ(r) is

not an eigenfunction of the two-body Schrödinger equa-
tion, but can be expanded in terms of the p-wave func-
tions (setting ℓ = 1 and neglecting the subscript ℓ from
ϕjℓ thereafter)

ϕj(r) =

∫ ∞

0

dkajkχk(r) + ajκχκ(r), (7)

where {ajk, ajκ} are the real expansion coefficients, the
integration is over all scattering states, and we have also
taken into account the possibility of a shallow bound
state with radial wave function χκ(r) and binding energy
Eb = ~κ2/M = ~

2R/(Mv), when v > 0 and R > 0. Ex-
tension to multiple bound states is straightforward. An
important consequence of such considerations is that, in
the asymptotic region where r0 ≪ r ≪ k−1

F , the form
of χk(r), and hence ϕj(r), when expanded in power of

k2, are identical to that of χ(0) and χ(1). Furthermore,
for r < r0, both are uniquely fixed by the two-body
physics. Thus, when evaluating the expectation value
of any short-range function such as potential U(r), χ(0,1)

can be taken out of the integration over k.
The interaction energy of the many-body system

can be written in terms of ρ2 as 〈U〉 =
∫

U(|r1 −
r2|)ρ2(r1, r2)d3r1d3r2. Using the decomposition Eq. (6)
and Eq. (7), we find

〈U〉 =
∑

m

[

C(m)
v

∫

drU |χ(0)|2 + C
(m)
R

∫

drUχ(0)χ(1)
]

,

(8)

where we have defined two p-wave contacts C
(m)
v,R for each

m,

C(m)
v =

∑

P,j

nP,j,m(

∫

dkajk)
2, (9)

C
(m)
R =

1

2

∑

P,j

nP,j,m

∫

dk

∫

dk′ajkajk′ (k2 + k′2). (10)

Here the contribution from possible bound states is im-
plicitly included in the integration over k. We note that

C
(m)
v has dimension of length, while C

(m)
R has dimension

of inverse length. Just as in the s-wave case, C
(m)
v,R encap-

sulate all the short-range correlations of the many-body
system. As a byproduct, the two-body density matrix
for r = r1 − r2 in the asymptotic regime r0 ≪ r ≪ k−1

F

can be written as

ρ2(r1, r2) =
1

Ω

∑

m

|Y1m(r̂)|2
[

C
(m)
v

r4
+
C

(m)
R

r2

]

. (11)

Now suppose that the potential U(r) can be con-
trolled via an auxiliary parameter λ, such that a small
change in U(r) can be written as (dU/dλ)dλ. We can
use the Hellmann-Feynman theorem and write dE/dλ =
〈dH/dλ〉 = 〈dU/dλ〉, where H = K+U is the total many-
body Hamiltonian with K denoting the kinetic energy,
independent of λ. Using Eqs. (3,4,8), we find

dE

dv−1

∣

∣

∣

∣

R

= − ~
2

M

∑

m

C(m)
v ,

dE

dR−1

∣

∣

∣

∣

v

= − ~
2

M

∑

m

C
(m)
R .

(12)
In the simplest case of a shallow p-wave two-body
bound state, the wave function in the asymptotic re-
gion 1/κ ≫ r ≫ r0 is given by ψκ(r) =

√
R(1/r2 +

κ/r) exp(−κr)Y1m(r̂) with κ =
√

R/v. It is then easy to
obtain ρ2(r/2,−r/2) = 1/Ω(R/r4−R2/vr2)|Y1m(r̂)|2 for
the two-body bound state [41]. One can extract directly

that C
(m)
v = R and C

(m)
R = −R2/v, consistent with the

adiabatic theorems Eq. (12). The derivation also applies
to thermal equilibrium, in which case, one should replace
the energy E by the free energy F of the system and keep
temperature constant [5].



3

As in the s-wave case, a pressure relation and virial
theorem can be found. In a uniform system, the uni-
versal hypothesis is that the free energy can be written
as F (T/TF, k

3
Fv, kFR) close to a p-wave resonance, where

TF is the Fermi temperature. Using dimensional analy-
sis [3–5],

P =
2

3
E +

~
2

MΩv

∑

m

C(m)
v +

~
2

3MΩR

∑

m

C
(m)
R , (13)

where E ≡ E/Ω is the energy density and E is
the total energy. In an external harmonic trap
V (r) = 1

2Mω2|r|2, the free energy can be written as
F (T/TF, k

3
Fv, kFR, ~ω/EF) near resonance, and we find

E = 2〈V 〉 − 3~2

2Mv

∑

m

C(m)
v − ~

2

2MR

∑

m

C
(m)
R , (14)

where 〈V 〉 denote the total potential energy due to the
harmonic confinement.
Momentum Distribution. The correlations encapsu-

lated by the two contacts determine the tail of mo-
mentum distribution, which can be measured using
time-of-flight imaging [7]. Theoretically, the momen-
tum distribution can be obtained by Fourier trans-
forming the single-particle density matrix ρ1(r, r

′) ≡
N−1

∫

d3r′′〈ψ†(r)ψ†(r′′)ψ(r′′)ψ(r′)〉. Given the struc-
ture of the two-body density matrix in the asymptotic
regime [cf. Eq. (11)], we find for kF ≪ k ≪ 1/r0 [41]

nk =
∑

m

[

16π2C
(m)
v

Ωk2
+

32π2C
(m)
R

Ωk4

]

|Y1m(k̂)|2, (15)

which shows that
∑

m C
(m)
v and

∑

m C
(m)
R determine the

strength of the 1/k2 [38] and 1/k4 tails in the momentum
distribution nk, respectively. We also note that a sub-
leading term in momentum distribution relating to the
s-wave effective range is found in Ref. [40].
Radio-frequency Spectroscopy. The rf coupling Hrf =

~Ωrf

∫

drψ†
e(r)ψ(r) transfers fermions into an initially

empty spin state |e〉, where Ωrf is the rf Rabi frequency.
For a perturbative Ωrf , the transfer rate can be written
as Γrf(ω) = (2π/~)

∑

i,f ρi|〈f |Hrf |i〉|2δ(~ω + Ei − Ef ),
where i, j label the initial and final states, and ρi de-
notes the initial state distribution. In the region EF ≪
~ω ≪ ER ≡ ~

2/MR2, one finds [42–44]

Γrf(ω) =
2MΩ2

rf

~

[

∑

mC
(m)
v

(Mω/~)1/2
+

3
∑

m C
(m)
R

2(Mω/~)3/2

]

. (16)

Static Structure Factor. By definition, the static struc-
ture factor S(q) = 2π

∑

i,f ρi|〈f |
∫

d3rn(r) exp(−iq ·
r)|i〉|2 and can be measured by Bragg spectroscopy [45].
Here n(r) is the density operator and other notations are
the same as before. S(q) can be obtained directly by
Fourier transforming ρ2, Eq. (11), and diverges linearly

in the limit q → ∞. It is cut off by the short-range
potential U(r) and will be limited by 1/r0.
Photo-association Spectroscopy. Photo-association

has been used to measure the fraction of closed chan-
nel molecules in two-component Fermi gases [46],
which is related to the s-wave contact [5, 6]. In
the case of a p-wave resonance, if the internal wave
function gm(r) of the relevant excited molecule has
a specific projection m along the ẑ direction, namely

gm(r) ∼ Y1m(r̂), the transition rate is given by Γ
(m)
pa (ω) =

2π~Ω2
pa

∑

i,f ρi|〈f |
∫

d3rd3Rg∗m(r)φ†m(R)ψ(R +

r/2)ψ(R − r/2)|i〉|2δ(~ω + Ei − Ef ), with Ωpa the
Rabi frequency and φ†m(R) the molecule creation
operator.
Since usually the final molecular state has a finite de-

cay rate γ, δ(~ω+Ei −Ef ) in the expression of Γ
(m)
pa (ω)

should be replaced by a Lorentzian (~γ/2)/[(~ω + Ei −
Ef )

2+(~γ/2)2]. Typically γ ∼ 10 MHz [46], much larger
than the energy scales associated with the spatial mo-
tion of the Fermi gas. As a result, when the ω of the
photo-association laser is tuned to resonance, ~γ domi-
nates over typical values of ~ω + Ei − Ef , and we can
approximate the Lorentzian by 2/~γ,

Γ(m)
pa =

4π

γ
C(m)

v Ω2
pa

∣

∣

∣

∣

∫

d3rg∗m(r)Y1m(r̂)
χ(0)(r)

r

∣

∣

∣

∣

2

. (17)

The Franck-Condon factor can be computed once gm(r)
is known. What is important here is that it depends
only on two-body physics, so the many-body dependence

is encapsulated in C
(m)
v . The contribution from C

(m)
R

is smaller by a factor (kFr0)
2 if the excited molecular

state is of extension r0. In the case when the photo-
association process does not distinguish between final
molecular states of different m, the total transition rate

will be the sum of the individual Γ
(m)
pa .

Virial Expansion for p-wave Contacts. At high tem-
peratures, the effects of the interaction can be taken into
account by the second virial expansion [47]. The change
of the free energy of the spinless fermions δF ≡ F −F0 is
given by δF/kBT = −2

√
2Nnλ3b2, where F0 is the free

energy without interactions and λ ≡ h/
√
2πMkBT . The

second virial coefficient is given by

b2 = 3

[
∫ ∞

0

dk

π

dδ(k)

dk
e−λ2k2/2π + θ(v)eEb/kBT

]

. (18)

Let Cv,R ≡ ∑

m C
(m)
v,R , then by the adiabatic theorems,

Cv

N
= 4

√
2πnλ

∂b2
∂v−1

,
CR

N
= 4

√
2πnλ

∂b2
∂R−1

. (19)

When v−1 = 0, ∂b2/∂v
−1 = (3/

√
2π)λR2hv(λ/(R

√
2π))

with

hv(η) = η + η2
∫ ∞

0

dx
(1 − e−x2

)(η2 + 3x2)

π(η2x+ x3)2
, (20)
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FIG. 1. (Color online.) Dependence of the contacts Cv (the
solid line) and CR (the dashed line) on Eb/EF for T/TF = 2
and their temperature dependences (inset) at a p-wave reso-
nance from the virial expansion. We have taken kFR = 1/25.

and ∂b2/∂R
−1 = (3/

√
2π)λhR(λ/(R

√
2π)) with

hR(η) =
1√
π
− ηeη

2

Erfc(η). (21)

Figure 1 shows the dependences of Cv and CR as a func-
tion of Eb/EF for T/TF = 2 and kFR = 1/25, appropriate
for the case of 40K with a typical density of 2×1019 m−3

at the p-wave resonances near B = 198.5G [12]. Here we
note that while Cv decreases monotonically as −Eb/EF

increases, CR shows non-monotonic behavior and reaches
a maximum when−Eb/EF ∼ 2, where it is comparable to
Cv, if non-dimensionalized by kF (see Fig. 1). The tem-
perature dependence of the contacts Cv and CR at v−1 =
0 is shown in the inset, for which CR is much smaller
than Cv; the magnitude of both grows with increasing
R. In the temperature regime TF . T ≪ ~

2/2MR2,
Eqs. (20) and (21) give Cv ≈ 6

√
2Nnλ3R ∼ T−3/2 and

CR ≈ 12πNnR2(1 − 3R2MkBT/2~
2), which should be

contrasted with T−1-dependence for s-wave contact [48].
Away from p-wave resonances where the scattering vol-

ume v is small, Eq. (18) gives Cv = 36π2Nnv2/λ2 and
CR = 180π3Nnv2/λ4 when contribution from the deeply
bound state is excluded. In this limit, the scaling Cv ∼ v2

and CR ∼ v2 is also expected from perturbation calcula-
tions for small v [24], which indicates the irrelevance of
Cv and CR in Fermi gases close to an s-wave resonance.
Discussion. Our derivation of the p-wave contacts is

based on the single-channel model which does not take
into account explicitly the presence of closed-channel
molecules, as in the case of a Feshbach resonance. The
same results shall be obtained for a two-channel model,
provided that the closed-channel molecule is small (com-
parable to r0), which is typically the case. This is because
all the arguments so far depend only on the properties of
the two-body wave function or two-body density matrix
in the asymptotic regime, which, in our derivation, de-
pend only on the scattering volume v and effective range

R, irrespective of whether they arise from a shape reso-
nance or a Feshbach resonance. For actual atomic sys-
tems, the van der Waals potential modifies the p-wave
scattering phase shift by introducing a term α/k2 in the
effective range expansion [26, 49]. However, close to a
Feshbach resonance, it was shown that α ∼ 1/v2, whose
effects are thus negligible [26, 50]. As a result, we expect
that our main results Eqs. (11) to (17) to remain true
close to a p-wave Feshbach resonance.

Resonances for different |m| can be split due to mag-
netic dipole-dipole couplings [20]. For 40K, the m =
0 and m = ±1 resonances around B = 198.5 G
are split by about 0.5 G [20]. To take this into ac-
count, we can introduce phase shifts for different m,
cot δ(m) = −1/v(m)k3 − 1/R(m)k. Likewise, we can es-

tablish the relation dE/d(1/v(m)) = −~
2C

(m)
v /M and

dE/d(1/R(m)) = −~
2C

(m)
R /M while Eqs. (11) and (15)

to (17) stay intact.
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Note added. During the final preparation of this
manuscript, closely related work by Yoshida and Ueda
appeared [51], in which they discuss one of the contacts,
Cv, using a two-channel model.
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