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We determine the minimum energy required to control the evolution of any mesoscopic quantum
system in the presence of arbitrary Markovian noise processes. This result provides the mesoscopic
equivalent of the fundamental cost of refrigeration, sets the minimum power consumption of meso-
scopic devices that operate out of equilibrium, and allows one to calculate the efficiency of any
control protocol, whether it be open-loop or feedback control. As examples we calculate the en-
ergy cost of maintaining a qubit in the ground state, the efficiency of resolved-sideband cooling of
nano-mechanical resonators, and discuss the energy cost of quantum information processing.
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Recent advances in the fabrication and control of
mescoscopic quantum devices [1–5] has made their poten-
tial application in future technologies evermore promis-
ing [6–8]. In such applications mesoscopic systems must
be controlled to reduce the effects of environmental
noise [9, 10]. Since reducing noise necessarily involves re-
ducing the entropy of the controlled system, Landauer’s
principle suggests that there is an energetic cost, mean-
ing that work must be supplied that can never be recov-
ered. This energy cost is a fundamental question in quan-
tum control and technologically important as it quanti-
fies both the minimum power consumption and the mini-
mum heat dissipation that must be handled by mescopic
devices. Here we show that it is possible to fully char-
acterize, in a relatively simple way, the minimum power
required for continuous control of any mesoscopic quan-
tum system subjected to arbitrary Markovian noise [11].

There is a natural division of controlled systems into
weakly coupled and strongly coupled, depending on how
large their interaction with the controller. For weakly-
coupled systems – which include most present-day meso-
scopic systems [12] – the coupling does not appreciably
change the system’s energy levels. As a result, the con-
trol does not affect the noise processes perturbing the
system, but only adds Hamiltonian terms to the dynam-
ics that facilitate control. For strongly-coupled systems
the coupling does modify the system’s energy levels and
with that the environmental noise. It means that the con-
trolled system and controller cannot be treated as ther-
modynamically separate.

Preliminaries.— The evolution of a mesoscopic sys-
tem S weakly-coupled to its surroundings is given by a
linear differential equation for its density matrix ρ. De-
noting the Hamiltonian of the system as HS and the lin-
ear super-operators that model the irreversible dynam-
ics induced by the environemental noise processes DiS ,
i = 1, . . . , N , the equation of motion for S in the ab-
sence of any control mechanism is the Lindblad master
equation ρ̇ = −(i/~)[HS , ρ]+

∑
iDiS(ρ) ≡ LS(ρ) [10, 13].

We further assume each noise process has an invariant
state πi, given as DiS(πi) = 0. For example, noise from a
thermal reservoir at temperature T , would have as a fixed
point the Boltzmann density πeq ∝ e−HS/T (with kB = 1,
assumed throughout). Thus, we can view the overall dy-
namics as a competition between noise processes, each
trying to impose its own steady state onto the system.
The net effect is that in the absence of control, S will
relax to a noise-induced steady-state density matrix ρss,
given as the solution of LS(ρss) = 0. The goal of control
is to maintain S in an arbitrary state ρ∗ 6= ρss.

Weakly-coupled control.— Control is implemented by
weakly coupling S to an auxiliary quantum system A im-
mersed in a thermal bath at temperature T , as in Fig. (1),
in such a way that the reduced steady-state of S is ρ∗.
The assumption that S andA are weakly coupled guaran-
tees that the dynamics induced in S by its surroundings,
given by {DiS}, is not changed by the coupling; yet, the
control system can still affect S’s evolution. Thus, the
evolution of the joint density matrix τ of S ⊕ A can be

FIG. 1. Diagram of energy flow in a control process: A system
S (green square) bombard by noises {Di

S} is manipulated by
a control system, consisting of an auxiliary A (blue circle)
that extracts noise and energy

∑
Ei
S from S, depositing this

energy as heat −Q̇A in its environment by supplying work
Ẇ . Time’s arrow is evident by the directional flow of energy
through the figure from left to right, which demands that
energy is dissipated.
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modeled as

τ̇ = (−i/~)[H(t), τ ] +
∑
i

DiS(τ) +DA(τ), (1)

in terms of the time-dependent joint Hamiltonian H(t) =
HS+HA+V (t) with auxilliary HamiltonianHA and weak
interaction V (t)� HS , HA, and the thermal-noise oper-
ator affecting the auxiliary, DA. It is important to note
that while we perform our analysis by coupling the sys-
tem to a mesoscopic auxiliary system, the results apply to
any control method, since this scenario has measurement-
based control as a special case [10, 14].

Our main result is the minimum power Ẇ that the
controller must supply to control S, which crucially de-
pends only on S’s surroundings and the target state ρ∗.
We prove this result rigorously – the proof is outlined
below, and is detailed in the Supplemental material [15]
– but it can be understood in terms of an intuitive pic-
ture. It is due to the fact that for any isothermal pro-
cess the work done on a system is bounded by the rela-
tion W ≥ ∆F , where ∆F is the change in the nonequi-
librium free energy F (ρ) = E(ρ) − TS(ρ), with aver-
age energy E(ρ) = Tr[ρHS ] and von Neumann entropy
S = −Tr[ρ ln ρ] [16]. With this in mind, each noise source
DiS continuously pushes the state of S away from ρ∗,
and in doing so changes its free energy, implying that
the controller must supply a commensurate amount of
work to restore this free energy. Specifically, in the con-
trolled steady state, the noise perturbations are changing
S’s entropy at a rate ṠiS(ρ∗) = −Tr[DiS(ρ∗) ln ρ∗] while
pumping energy in at a rate ĖiS(ρ∗) = Tr[DiS(ρ∗)HS ].
To undo these perturbations the controller must contin-
uously transfer this entropy and energy through A, even-
tually dumping it inA’s thermal reservoir at temperature
T . We show that this requires a minimum work rate

Ẇmin = −
∑
i

Ḟ iS(ρ∗) =
∑
i

T ṠiS(ρ∗)− ĖiS(ρ∗)

= −
∑
i

Tr[DiS(ρ∗)(T ln ρ∗ +HS)], (2)

where Ḟ iS is the rate of change of the free energy of S due
to the noise, evaluated at the temperature of the auxil-
iary’s thermal reservoir. To summarize, the noise affects
the free energy of S, and the controller must undo this
change in free energy, requiring work; the reference tem-
perature is that of A’s thermal reservoir, since the en-
ergy is ultimately dissipated there. This bound is for the
energetics of the joint system, and therefore not a mani-
festation of the nonadiabatic entropy production [17–19]
for quantum nonequilibrium steady states (see [15]). We
now explore the consequences of Eq. (2).

First, notice that Ẇmin may be negative, meaning that
we can extract energy while controlling the system. For
example, when the system is coupled to a hot bath at
TH and a cold one at TC , our target state ρ∗ may coin-
cide with the regime where S operates as a heat engine.

FIG. 2. Nonautonomous optimal control protocol: In a small
interval of time dt, noise perturbs the state of S (green square)
from ρ∗ → ρ′ = ρ∗ + LS(ρ∗)dt. An optimal controller is
formed by an auxiliary system A (blue circle) whose Hamil-
tonian can be set to match S’s. At the beginning of the
time interval, A’s state is the target state ρ∗, and control
proceeds in 4 steps: 1) A is decoupled from its thermal envi-
ronment, 2) A unitary swap is performed on S ⊕A changing
A’s state to ρ′, 3) A is coupled to its thermal environment,
and 4) A is isothermally and reversibly reset to ρ∗, doing work

W = F (ρ∗)− F (ρ′) ≈ −
∑
Ḟ i
S(ρ∗)dt.

However, for isothermal control in which S sees a sin-
gle bath at temperature T , Ẇmin must be positive as
required by the second law. Another important scenario
is that of maintaining S in a pure (zero-entropy) state.
Since the derivative of entropy at zero is infinity, such
control requires an infinite rate of work as reflected by
the term ln ρ in Eq. (2). It is for the same reason that
the power required for macroscopic refrigeration tends
to infinity as the cold temperature tends to zero. Fi-
nally, our result also supplies the minimum work to push
the system through a specified sequence of states ρ∗(t),
from t = 0 to θ, since the energy cost at any particu-
lar time depends only the system’s state at that time:

Ẇmin = −
∫ θ

0

∑
Ḟ i[ρ∗(t)] dt. Via this bound one can

quantify the energetic efficiency of finite-time protocols
such as shortcuts to adiabaticity [20].

Our analysis further reveals that the minimum work,
Eq. (2), can be achieved when the auxiliary operates re-
versibly. This requires a separation of time-scales, where
the thermal relaxation of the auxiliary is very fast allow-
ing it to remain essentially always in equilibrium. Ad-
ditionally, the auxiliary’s Hamiltonian dynamics must be
fast compared to the system dynamics in order to rapidly
extract the noise. An explicit nonautonomous protocol
that implements this time-scale separation is described
in Fig. (2), where the rapid auxiliary dynamics are ex-
ploited to complete a reversible control cycle in every
infinitesimal moment of time.

Strongly-coupled control.— When the auxiliary is cou-
pled to S so strongly that it changes the energy levels
of S, it also changes the effect of the environment on S
by altering the {DiS}. Because of this we can no longer
bound the minimum work to control S solely in terms of
the properties of S, because the result will depend on the
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choice of joint Hamiltonian H through the interaction.
First we observe that if we have access to any joint

Hamiltonian H, no work is required to sustain S in an
arbitrary constant state ρ∗: We can always choose a fixed
H so that the energy levels and eigenstates of S set ρss =
ρ∗. Since H is time-independent, no work is required.
Therefore the problem is well-motivated only when the
interaction V is restricted to a subset V of all interactions.
We include in V all weak-coupling Hamiltonians, defined
as those that do not change appreciably the eigenstates
or eigenvalues of the system. This allows any control of
the system that is slow compared to its dynamics, and
unlimited control of the auxiliary [15].

We show that the minimum work to control strongly
coupled systems is

Ẇmin = min
H,τ

[
−
∑
i

Tr[DiS(τ)(T ln τ +H)]

]
, (3)

where the minimum is taken over all H ∈ V and τ such
that TrA[τ ] = ρ∗. The proof is an extension of that for
Eq. (2) [15]. We show this bound is tight by demonstrat-
ing a protocol that saturates it, akin to the weak coupling
protocol in Fig. (2). Suppose we know the Hamiltonian
and density matrix that gives the minimum in Eq. (3):
call them Hm and τm. Then in a small time interval
dt the system’s noise perturbs the joint system, causing
an evolution τm → τ ′. To undue these perturbations,
we couple the joint system to A’s thermal reservoir and
rapidly and reversibly raise A’s energy levels, so that
the joint state becomes σ ⊗ |0〉〈0|, for some system state
σ. The auxiliary is then uncoupled from the bath, and
the state of the system is swapped into the auxiliary:
|0〉〈0| ⊗ σ. This will usually require a weak interaction,
which is allowed since it is only strong changes to V that
are constrained. Now that all nontrivial structure of the
state is contained in the auxiliary, we can use our ability
to arbitrarily manipulate the auxiliary Hamiltonian to
isothermally and reversibly return the joint state to the
initial state τm. Since the entire process that takes the
joint state from τ ′ → τm is reversible, the work equals
the free energy difference ∆F = F (τm)−F (τ ′) predicted
in Eq. (3). Note that here we have restricted ourselves to
a constant or slowly varying ρ∗, and thus Hm, to ensure
that the system evolution is Markovian.

Resolved-sideband cooling.— Resolved-sideband cool-
ing is the current state-of-the-art in cooling mechanical
quantum resonators [21–25] and is an example of coher-
ent feedback control [26, 27]. The auxiliary system is an
optical or superconducting oscillator with a frequency,
Ω, sufficiently high that it sits in its ground state at
the ambient temperature T . Cooling is accomplished by
coupling the oscillators linearly and modulating this cou-
pling at the frequency difference. In the weak coupling
(rotating-wave) approximation the interaction Hamilto-
nian is V = G + G† with G = ~ga†be−i(Ω−ω)t; ω is the

mechanical frequency, and a and b are the respective an-
nihilation operators for the oscillators. This driven inter-
action mediates quanta exchange between the resonators,
with the energy difference per quantum supplied as work
∆w = ~(Ω − ω). To achieve cooling the auxiliary must
dump energy into the bath with sufficient speed.

Due to the linear dynamics the cooled steady state
of the mechanical oscillator under sideband cooling is
a Boltzmann-like equilibrium state at an effective tem-
perature, Teff < T . While Teff is not a true tempera-
ture we will see that it is useful. The rate at which the
bath increases the oscillator entropy in the cooled state is
ṠS = Q̇S/Teff , with Q̇S the heat flow from bath into the
oscillator and equivalently the energy flow to the auxil-
iary. Thus rather strikingly the mesoscopic oscillator has
an entropy production rate identical to that of a thermal
bath at temperature Teff . Because of this the cooling ef-
ficiency has precisely the form of that of a macroscopic
refrigerator. Defining the coefficient of performance in
the usual way as ηCOP = Q̇S/Ẇ , where Ẇ is the actual
power consumed by the fridge [28], the minimum power
can be written as Ẇmin = Q̇Sη

COP
ideal , with efficiency

ε = Ẇmin/Ẇ = ηCOP/ηCOP
ideal . (4)

Here ηCOP
ideal = T/Teff − 1 is the ideal Carnot coefficient

of performance. In Fig. (3), we plot the effective tem-
perature and efficiency achieved by sideband cooling as a
function of the interaction rate g, using parameters from
the recent experiment in [29]. We see that stronger cou-
pling gives increased efficiency and a colder temperature,
and that high damping is only effective when the coupling
transfers the entropy with sufficient speed.

Cooling a single qubit.— The master equation describ-
ing a weakly-damped qubit with energy gap E in contact
with a bath at temperature T can be found in [10, 13].
We wish to maintain the qubit at a temperature Tc < T .
If Tc/E � 1, so that the qubit is close to its ground state,
the required power from Eq. (2) is simply

Ẇmin ≈ γnTE (T/Tc − 1) , (5)

with γ the qubit’s damping rate and nT = 1/(eE/T − 1).
The power goes to infinity as Tc → 0 as expected. The
full expression for arbitrary Tc is obtained by replacing
nT by the (z − w)/[(z − 1)(w + 1)] where z = exp(E/T )
and w = exp(E/Tc).

Coupling the qubit strongly to an auxiliary qubit with
an energy gap E > E provides a simple example in which
a strong interaction reduces the power requirements for
ground-state cooling. The interaction allows us to effec-
tively increase the energy gap of the first qubit, increasing
the equilibrium population of the ground state and thus
reducing the effort required to preserve that state. Let
the auxiliary gap be E � kT so that it effectively sits in
its ground state |0〉, and take the Hamiltonian of the two
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FIG. 3. Plot of the efficiency ε of resolved-sideband cool-
ing of a mechanical oscillator in the weak-coupling regime,
as a function of the interaction rate g for three values of the
auxiliary oscillator’s damping rate, γ′/2π = 105 Hz (solid
black), 106 Hz (dashed red), and 107 Hz (long-dashed blue).
Corresponding opaque curves give the cooled effective tem-
perature Teff , and the grey dotted line is the ambient tem-
perature T . Parameters from [29] are ω/2π = 10.56 MHz,
Ω/2π = 1.54 GHz, T = 20 mK, and γ/2π = 32 Hz.

qubits as H = Eσ
(1)
z /2 +HI + Eσ(2)

z /2 with the interac-

tion HI = gσ
(1)
z σ

(2)
z /2. Since the auxiliary is in state |0〉,

if we set g = −ε, and assuming that E > ε > E, then the
two lowest energy states of the joint system are |0〉|0〉 and
|1〉|0〉, where |i〉|j〉 denotes system state |i〉 and auxiliary
state |j〉. These two states have an energy gap of E + ε,
so the interaction effectively increases the energy gap of
the first qubit by ε. The minimum power consumption
is then given by replacing E with E + ε in Eq. (5).

Devices that operate out-of-equilibrium.— A quantum
computer is one such device. While quantum logic gates
are unitary and thus require no energy, a quantum com-
puter consumes power because the constituent qubits are
subject to relaxation (errors) from environmental noise.
The error-correction process continually introduces new
qubits prepared in near-pure states to combat these er-
rors [30–32]. We can estimate the energy consumption
per qubit for a quantum computer by using a simple
error model, and averaging the minimum energy dis-
sipation for a single qubit over all pure states. Since
fault-tolerant computation requires that the qubits are
refreshed while the errors are still small, the analysis we
have performed above for continuous-time control is ap-
propriate. However we restrict to logic gates that are slow
compared to the qubit frequency to ensure the damping
is Markovian [33]. A typical error model involves thermal
damping at (effectively) zero temperature at rate γ, and
depolarizing at rate β for which the master equation is
ρ̇ = −(γ/2)(σ†σρ+ ρσ†σ− 2σρσ†)− (β/4)

∑
j [σj , [σj , ρ]]

with j = x, y, z. The change in free energy averaged over
all pure states is ∆F ≈ (pβ ln pβ + pγ ln pγ)kT − pγE,

where pβ = βτ � 1 and pγ = γτ/2 � 1 are the er-
ror probabilities due to the thermal damping and de-
polarizing, respectively, and E is the energy gap of the
qubit. The time τ is the duration of a single lowest-level
fault-tolerant gate, which includes the auxiliary qubits
injected for error-correction and/or teleportation oper-
ations, both or which refresh the working qubits [30].
The minimum energy consumption of a computation is
therefore M∆F where M is the total number of qubits
injected during the computation. Given the above form
of ∆F , we can conclude that if quantum computers run
with kT � E as presently envisaged, the minimum en-
ergy cost will be dominated by the loss of the qubits’
internal energy to the bath.

Outline of proofs of Eqs. (2) and (3).— The key ingre-
dient is a second-law-like inequality for the entropy pro-
duction of an open quantum system modeled with a Lind-
blad master equation, which follows from the monotonic-
ity of the quantum relative entropy under Markovian
noise [34–36]. If we define ΣiS = −Tr[DiS(τ)(ln τ − lnπi)]
and ΣA = −Tr[DA(τ)(ln τ − lnπeq

A )], then Σ =
∑
i ΣiS +

ΣA gives the total entropy production of the joint sys-
tem. Further, ΣA and the ΣiS are time derivatives of
relatives entropies under Markovian noise processes. As
such they are negative and thus Σ ≥ 0. If we drop all the
entropy production due to A we obtain Σ ≥

∑
i ΣiS ≥ 0.

We now trace over A because we want a bound purely in
terms of S. This operation decreases Σ due to the mono-
tonicity of the relative entropy under partial trace [36],
giving us Σ ≥ −

∑
Tr[DiS(ρ∗)(ln ρ∗−lnπi)] ≥ 0. We next

note that in the steady state Σ = −
∑

Tr[DiS(ρ∗) lnπi]−
Q̇A/T , in terms of the heat flow Q̇A = −Tr[DA(τ) lnπeq

A ]
out of A’s reservoir. The relation in Eq. (2) then follows
from energy conservation in the steady state, −Q̇A =
Ẇ +

∑
ĖiS . To obtain Eq. (3) the steps are the same as

those above, except that we minimize the right hand side
of Σ ≥

∑
i ΣiS over the interaction V , and then skip the

step in which we trace over A [15].
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