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Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are
presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich
formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a
closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered
data are unified by a timescale, which leads to a similarity behavior, governed by a distinctive
solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the
“entropic” and the “constant-tension” regime. The bending rigidity and the initial membrane
tension can be simultaneously extracted from the data/model analysis, posing the current approach
as an effective means for the mechanical analysis of biomembranes.
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The mechanics of lipid membrane is essential to many
fundamental biological processes such as signal transduc-
tion, vesicle trafficking, membrane fusion, mechanosens-
ing, and ion channel gating [1]. Giant unilamellar vesi-
cles (GUVs) with dimensions of living cells and con-
trolled membrane composition constitute ideal model
systems to characterize the properties of lipid assem-
blies [2]. A variety of techniques have been developed
to probe vesicle mechanics, including AFM [3], optical
and magnetic stretching [4, 5], micropipette aspiration
[6], tether pulling [7], shear-flow-based deformation [8],
fluctuation spectroscopy [9], and electrodeformation [10–
12]. In each case (except fluctuation spectroscopy), the
common strategy is to investigate the deforming response
of the membrane via the application of external forcing.
Mechanical properties such as the bending rigidity and
elastic modulus can be extracted via model analysis, e.g.,
of the force-deformation relation [13–16]. These stud-
ies shed significant insight on the lipid membrane as a
soft material, and provide powerful analytical tools for
its mechanical characterization. Meanwhile, challenges
remain, such as complex contact geometries between the
probe and the membrane which lead to singularity and
complexity in model analysis, low through-put, and the
requirement of sophisticated instrumentations.

The current work does not attempt to present another
deformation-based technique. Instead, we bring to the
focus light an aspect previously overlooked, namely, the
relaxation after removal of external forcing. In this pro-
cess, the dynamics is left to the mere devices of membrane
retraction and responsive fluid motion, and the physical
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problem is thus significantly simplified. Relaxation has
been broadly analyzed in other fields such as polymer
science [17–19] and droplet dynamics [20, 21]. However,
for vesicles (and in general for biological cells), it has
been a long-ignored aspect, and investigations are scarce
in comparison with the extensive amount of work on the
deformation. Prior studies were either phenomenological
and in the absence of a quantitative modeling [22–24],
or accessorial to deformation analysis and for a limited
few cases [16, 25, 26]. The fundamental merit of relax-
ation analysis and its significance have been thus far elu-
sive, due to the lack of attention and systematic mea-
surements. In contrast, the current work posts the first
relaxation study combining a quantitative theory with
controlled experiments, with which we unveil the particu-
larly simplistic behavior and universal aspects of this pro-
cess. The contributions are as follows. First, we derive a
closed-form solution for the dominantly observable mode,
namely, the ellipsoidal mode. Second, we produce exten-
sive data for different vesicle types, which provides the
basis for our analysis. Third, the scattered data is uni-
fied by considering an important timescale, which leads
to a similarity behavior, governed by a unique solution.
This solution serves as the hallmark for each vesicle type
(or each value of bending rigidity). Fourth, two distinc-
tive regimes are identified, namely, the “entropic” regime,
and the “constant-tension” regime, controlled by differ-
ent physical parameters. Last but not least, both the
intrinsic property, the bending rigidity, and the extrinsic
property, the initial membrane tension, can be simultane-
ously extracted and differentiated. The current approach
thus may be developed into an effective method for the
mechanical analysis of lipid or polymer membranes, for
vesicles, and eventually for cells and other biomembranes.

We begin with the basic assumptions the analysis pred-
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icates on: a) Assuming that the vesicle is deformed from
an initially spherical state, the vesicle then remains el-
lipsoidal in its apparent shape during relaxation, and re-
laxes back to a sphere. This assumption follows many
direct observations [11, 22], and is justified via Fourier
analysis of the image contours (see Supplemental Ma-
terial (SM) for details). b) The vesicle volume is con-
served. Under these two assumptions, the membrane
contour is described by a single Legendre polynomial,
r = r0[1+(2/3)εP2(cos(θ))]. Here (r, θ, φ) defines a spher-
ical coordinate system, r0 is the vesicle radius in the
spherical state, and P2(x) = (3x2 − 1)/2. The shape fac-
tor, ε, is related to the vesicle aspect ratio by ε = a/b−1,
where a and b are the lengths of the major and minor
axes, respectively. The evolution equation for the relax-
ation of ε can be derived following the analysis of Seifert
for quasi-spherical shapes [26, 27], by removing the de-
forming external flow field in the governing equation of
the P2 mode (SM):

dε

dτ
= −Cε exp

(
8πκ∆

kBT

)
, τ =

t

tD
, tD =

r0µe
Γ0

, (1)

C = 24/(32 + 23µr), µr = µi/µe. (2)

Here t is time. Γ0 is the membrane tension in the spher-
ical state, which we term “initial membrane tension”. µi
and µe are the intra- and extra-vesicular viscosity, re-
spectively. κ is the bending rigidity, kB is the Boltz-
mann constant, and T is temperature. ∆ is the increase
in the apparent membrane area relative to the spherical
state. In adopting Eq. (1), we have assumed that P2

is the dominant mode giving rise to the apparent vesicle
shape, whereas all other modes of the spherical harmon-
ics have relaxed to thermal fluctuations according to the
Langevin equation [27]. Finally, the celebrated Helfrich
model effectively manifests itself in Eq. (1) via

Γ/Γ0 = exp(8πκ∆/kBT ), (3)

where Γ is the membrane tension corresponding to a de-
formed state [28]. In this model, membrane tension in-
creases/decreases in response to the unfolding/folding of
the “undulations” (thermal fluctuations) on the mem-
brane. Importantly, Eq. (3) is directly derived from
the total membrane area constraint in [27]. Previously,
the Helfrich formula only applies to equilibrium shapes.
However, we demonstrate that for moderate-to-high
membrane tension (& 10−7 N/m), and due to the fast
relaxation timescale of the higher modes and the low per-
centage of area stored in the lower fluctuation modes, this
equilibrium formula can be extended to study dynamic
situations such as in relaxation (SM). The current work
henceforth complements fluctuation microscopy which is
appropriate for low-tension (∼ 10−9 − 10−8 N/m) mem-
branes [9, 12, 29].

A salient feature of Eq. (1) is that in a dimensionless
form, it is an autonomous ODE for ε, because ∆ is ex-
clusively a function of ε. This feature implies that once
properties such as κ, µi and µe are known, the solution
to this equation is unique. Furthermore, this solution
can be attained in a closed form if one recognizes that
via Taylor expansion, ∆ = 8ε2/45 + O(ε3). Substituting
this expression into (1) and ignoring the O(ε3) term, we
arrive at an analytical solution after integration,

E1(αε2) = E1(αε20) + 2Cτ, (4)

where α ≡ 64πκ/45kBT , and ε0 is the value for ε at
τ = 0, the beginning point of relaxation. Here E1 is
the exponential integral function encountered regularly
in biophysical or physical problems [30, 31]. When the
vesicle approaches sphericity, namely, ε → 0, E1(αε2) ∼
− ln(αε2). Eq. (4) becomes simply

ε = ε0 exp(−Cτ). (5)

Equation (5) is similar to the relaxation equation for
droplets [20], with a slightly differing factor, C (see SM).
Based on Eqs. (4, 5), two regimes of relaxation can be
readily delineated. The first is the “entropic” regime: for
higher values of ε, the trend of the solution is controlled
by the bending rigidity since the membrane tension de-
pends strongly (exponentially) on the apparent surface
area. Relaxation eventually reduces ε to be sufficiently
small, so that the “constant-tension” regime is reached.
In this regime, because ∆ ∼ O(ε2), the Helfrich consti-
tutive relation (3) is weak, and Γ ≈ Γ0 to the leading
order. In this case, Eq. (5) is equivalently obtained by
integrating Eq. (1) while setting ∆ = 0. Equation (4)
provides a simple and convenient approximate solution
to the original ODE (1), and is employed in the ensuing
data analysis. A validation of its accuracy is included in
the SM.

To test the theory, 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC) vesicles, pure or mixed with
cholesterol of 10, 20 and 30% in mole fraction, were
formed using standard electroformation technique, and
were deformed with DC electric pulses following proto-
cols developed in our previous work (SM) [22, 32]. This
particular technique is chosen due to its advantage of
the lack of direct contact with the vesicle. However, the
general methodology presented in this work could be ap-
plied to relaxation induced by any other type of deforma-
tion trigger insofar as the vesicle remains approximately
ellipsoidal. Representative images of the deformation-
relaxation process are shown in Fig. 1. In Fig. 1a,
the vesicle was in its initial, spherical state. An applied
pulse (1.6 kV/cm, 100 µs) elongated the vesicle (b) until
it reached maximum deformation (c). The vesicle then
relaxed after the pulse ceased (d, e), and eventually re-
stored sphericity (f). Each vesicle image is fitted with an
elliptical shape (see c), from which a and b are extracted.
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FIG. 1: (a)-(f) Representative phase-contrast images of a
POPC vesicle deformed with a DC electric pulse. (g) ε is
defined as a/b− 1, and is shown as a function of time.

Other shape modes are negligible as we demonstrate in
the SM. In g, ε is shown as a function of time, where
the approximate locations of a-f are noted. Successful
model predictions on electrodeformation have been de-
veloped elsewhere [16, 26, 33], whereas here we focus on
relaxation.

Figure 2a shows the relaxation of 8 POPC vesicles re-
sulting from deformation induced via different pulsing
parameters. The short pulse duration and low voltage
ensured the absence of membrane poration (see Table
S2 in the SM). Importantly, we carefully evaluated and
ruled-out the effects of membrane-discharging during re-
laxation (SM). The data is seemingly scattered, but the
behavior is qualitatively similar. On a logarithmic scale,
ε experiences a relatively rapid initial decrease, followed
by an asymptotic approach to linearity with respect to
time. The similarity invites attempts to collapse the data
via non-dimensionalization. In fact, we already demon-
strated above that once κ, µi, and µe are given, relaxation
follows a unique solution as a function of the dimension-
less time, τ . This solution unites the data regardless of
the original state of the vesicle, namely, initial tension,
Γ0, and radius, r0; and the starting point of relaxation,
ε0, since the governing ODE is autonomous. The result
is demonstrated in Fig. 2b. For each set of data, the
dimensional (physical) time, t, is first normalized with
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FIG. 2: Relaxation of POPC vesicles. (a) ε is shown for 8
different vesicles denoted by different colors. (b) Time nor-
malization and translation leads to collapse of all data in (a).
The solid curve is theoretical prediction with Eq. (4). The
dashed curve is a guide for the eye, ε ∼ exp(−Cτ). A “con-
stant” in the time label denotes translation.

tD to obtain τ (Eq. (1)). The data sets are also allowed
to translate horizontally for alignment, a standard op-
eration for an autonomous system without altering the
governing physics (SM). We observe that the 8 data sets
are now in concurrence with each other in dimensionless
form, and are well captured by a theoretical solution pro-
duced with Eq. (4). In generating results in Fig. 2b, the
values of both Γ0 (to calculate tD) and κ are needed, and
are obtained by minimizing the error between the data
sets and the theoretical solution. The bending rigidity, κ,
is assumed to be the same for all 8 vesicles, and is found
to be 1.22× 10−19 J. Values of Γ0 differ for each vesicle;
these and all pertinent parameters are found in Table
S2 of the SM. An excellent agreement is indicated by the
value of the coefficient of determination, R2 = 0.986. The
data analysis and results are extensively validated, espe-
cially by comparing three different methodologies. Note
that large fluctuations are observed for ε . 0.015, due
to thermal noise and limitations in the imaging system.
This part of the data is consistently discarded in Fig. 2b
and all results to follow. Details of the methods and a
discussion on the cut-off threshold is found in the SM.

Some further remarks on Fig. 2b are appropriate.



4

First, the presence of the regimes as suggested by the
theory is evident. We observe that for ε . 0.038, all vesi-
cles relax exponentially according to Eq. (5). On the
other hand, for ε & 0.038, the deviation from the expo-
nential behavior is dictated by the Helfrich constitutive
relation. The separation of the regimes is schematically
delineated by a dot-dashed line. The determination of
the threshold value is discussed later. Second, in the
analysis above we have effectively presented a method to
simultaneously extract κ and Γ0. The former is an intrin-
sic membrane property, and the value from our analysis,
1.22× 10−19 J, agrees well with that from the literature
(0.39−1.6×10−19 J [13]). The initial membrane tension,
Γ0, is a non-intrinsic property that depends on the his-
tory of every vesicle and can be modulated by means such
as changes in the extra- and intra-vesicular osmolarity.
Our approach is simple and convenient when compared
with many alternatives, in particular when considering
the closed-form solutions (4, 5).

The same analysis on additional data is presented in
Fig. 3. Altogether 5 groups are shown. The POPC data
is identical to those shown in Fig. 2b, presented here for
reference. Data for POPC with 10%, 20%, and 30% of
cholesterol contain 8, 7, and 6 vesicles, respectively. Data
for each vesicle type is normalized following the approach
above, and then translated so that they are aligned in the
last stage, i.e., in the constant-tension regime. Solid lines
represent the theoretical prediction for each case. We ob-
serve again the similarity pattern for each vesicle type. In
addition, as the cholesterol concentration increases, the
initial descent of the relaxation in the entropic regime be-
comes successively steeper, indicating an increase in the
value of κ. Indeed, they are found to be 1.73, 1.90, and
2.18× 10−19 J, respectively. These numbers corroborate
the trend in the measurements by Henriksen et al. [29]
using fluctuation spectroscopy, namely, 2.24, 2.89 and
3.57×10−19 J for POPC vesicles with 10%, 20%, and 30%
cholesterol (mole fraction), respectively. The differences
in the values of κ are attributed to those in the specific
experimental conditions, especially the sugar concentra-
tions [13]. However, as the constant-tension regime is
reached with lower values of ε, all vesicles converge to
the linear (exponential) behavior.

Particular to electrodeformation, we also present an-
other group of data, namely, electroporated POPC vesi-
cles (filled triangles). Poration was induced by stronger
and longer pulses (Table S6). In this case, all 4 sets of
relaxation data follow a pure exponential decay. This
result is interesting but not surprising, as for an electro-
porated membrane, area expansion/contraction can be
mediated by that of electropores, and the Helfrich con-
stitutive relation is therefore lost. Detailed parameters
for all vesicles in Fig. 3 are listed in Tables S2-S6 in the
SM.

Importantly, the transition value of ε between the en-
tropic and constant-tension regimes does depend on κ,

C= + constant
0 0.5 1.0 1.5

sh
ap

e 
fa

ct
or

, 0

0.015

0.02

0.05

0.10

0.20
POPC, 8 vesicles
POPC with 10% Chol., 8 vesicles
POPC with 20% Chol., 7 vesicles
POPC with 30% Chol., 6 vesicles
POPC, porated, 4 vesicles

FIG. 3: Relaxation of POPC vesicles with various cholesterol
mole fractions, and electroporated POPC vesicles. The solid
and dashed lines are theoretical predictions. The values of
R2 are 0.986 (pure POPC), 0.942 (10%), 0.964 (20%), 0.985
(30%), and 0.993 (porated).

as depicted in Fig. 4 in the phase space of κ and ε.
The two regimes are separated by the solid line using
exp(8πκ∆/kBT ) = 1.2. Note that the choice of 1.2 is
empirical: it is a number indicating an appreciable de-
viation from the constant-tension regime. Considering
that ∆ ∼= 8ε2/45, we have κε2 ∼= 1.75 × 10−22 J as an
approximate guideline. To the far right, we also present
the elastic regime, which occurs for large deformations
where all fluctuations are flattened. In this case, the in-
termolecular spacing of the lipids does change, and elastic
stretching becomes appreciable. For this regime, an ex-
tension of the Helfrich model needs to be used instead
of (3), ∆ = kBT

8πκ ln
(

Γ
Γ0

)
+
(

Γ
Γ0
− 1

)
Γ0

Ka
[28]. Here Ka is

the bulk elastic modulus of the membrane, and the first
and second terms on the RHS denote contributions from
entropic and elastic stretching, respectively. The dashed
lines in Fig. 4 are calculated by setting equal the two
competing contributions, for three representative values
of Ka/Γ0, namely, 104, 105 and 106, using Ka ' 0.2 N/m
[34] and Γ0 ' 0.2− 20× 10−6 N/m (SM). In Fig. 4, each
symbol represents a pair of (ε0, κ), for the vesicles pre-
sented in the first four groups in Fig. 3. Evidently, all
vesicles in the current study do not reach the stretching
regime.

In a brief summary, this work reveals the simplistic be-
havior of ellipsoidal relaxation of GUVs, and elucidates
its characteristics. A closed-form solution lends further
power to the analysis, and serves as a unique hallmark
for each vesicle type. The methodology can be poten-
tially extended to study important mechanical problems
of biological cells. For example, both bending rigidity
and membrane tension are found to play critical roles in
nanoparticle-cell membrane interaction [35]. The current
approach promises consistent and specific property dif-
ferentiation, in contrast to the deformation-based, bulk-
averaged measurements [36]. The model is currently lim-
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FIG. 4: Regimes of relaxation in the phase space of ε and κ.
Each symbol represents a pair of (ε0, κ) (or a vesicle) for data
in Fig. 3, with the same legend.

ited to membranes with negligible viscosity as in fluid
lipid membranes, and does not capture any rheological
behavior therein. However, such extension can be incor-
porated [26]. Last but not least, the relaxation analysis
may be applied to study vesicles/membranes deformed
with means other than electric fields.

HL acknowledges funding support from NSF CBET-
0747886 and NSFC 11328201. KAR and RBL acknowl-
edge support from FAPESP. The authors gratefully ac-
knowledge constructive discussions with P. Vlahovska.

[1] D. Boal, Mechanics of the Cell, Second Edition (Cam-
bridge University Press, 2012).

[2] R. Dimova, Giant vesicles: a biomimetic tool for mem-
brane characterization, edited by A. Iglic, Advances in
Planar Lipid Bilayers and Liposomes, Vol. 16 (Elsevier
Inc., 2012) pp. 1–50.

[3] Q. Chen, H. Schönherr, and G. J. Vancso, Soft Matter
5, 4944 (2009).

[4] O. Sandre, C. Ménager, J. Prost, V. Cabuil, J.-C. Bacri,
and A. Cebers, Phys. Rev. E 62, 3865 (2000).

[5] M. E. Solmaz, R. Biswas, S. Sankhagowit, J. R. Thomp-
son, C. A. Mejia, N. Malmstadt, and M. L. Povinelli,
Biomed. Opt. Express 3, 2419 (2012).

[6] E. Evans and W. Rawicz, Phys. Rev. Lett. 64, 2094
(1990).

[7] V. Heinrich and R. E. Waugh, Ann. Biomed. Eng. 24,
595 (1996).

[8] M. Abkarian and A. Viallat, Biophys. J. 89, 1055 (2005).
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