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The unexpected weakness of some faults has been attributed to the emergence of acoustic waves
that promote failure by reducing the confining pressure through a mechanism known as acoustic
fluidization, also proposed to explain earthquake remote triggering. Here we validate this mechanism
via the numerical investigation of a granular fault model system. We find that the stick-slip dynamics
is affected only by perturbations applied at a characteristic frequency corresponding to oscillations
normal to the fault, leading to gradual dynamical weakening as failure is approaching. Acoustic
waves at the same frequency spontaneously emerge at the onset of failure in absence of perturbations,
supporting the relevance of acoustic fluidization in earthquake triggering.

PACS numbers: 45.70. n, 45.70.Ht, 46.55.+d, 91.30.Px

Most fault systems exhibit a resistance to shear stress
much smaller than the one predicted by experiments
measuring the friction coefficient of sliding rocks [1]. A
possible explanation of this unexpected observation is
represented by “acoustic fluidization” (AF) that is ac-
tive due to the presence of crushed and ground-up rocks
produced by past wearing inside the fault, usually defined
as fault gouge [2, 3]. According to the AF mechanism,
seismic fracture produces elastic waves that diffuse and
scatter inside the fault, generate a normal stress contrast-
ing the confining one, and thus promote seismic failure.
The same mechanism could be also activated by tran-
sient seismic waves generated by other earthquakes. AF,
indeed, has been also proposed to explain why seismic
activity is observed to increase, within minutes after big
earthquakes, in areas at a distance of thousand kilome-
ters from the mainshock epicenter [4–6]. Because of the
large distance and the rapid response, the passage of seis-
mic waves represents the most reasonable explanation for
this remote triggering [7–9]. Indeed, these seismic waves
could scatter inside a fault, effectively reducing the con-
fining pressure and promoting failure. To investigate this
scenario, experiments have considered granular based
models of seismic faults [10–13], and demonstrated that
acoustic perturbations can produce lasting changes in the
granular rheology, together with stick-slip events [11, 12]
and auto-acoustic compaction [13]. For instance, acoustic
waves have been recently shown to induce up to a ten–
fold decrease in the frictional strength [14, 15] of granu-
lar materials. Consistently, numerical investigations have
also demonstrated that vibrations can advance the time
of slip instability [16, 17]. Other studies have identified
a frequency regime leading to friction reduction [18, 19]
caused the detachment of the particles from the vibrat-
ing confining planes and not related to the fluidization of

the granular bed.

Here we validate the AF scenario through the numer-
ical investigation of a model system. First we show that
perturbations at a characteristic resonant frequency are
able to activate acoustic modes inside the fault, promot-
ing the entire system fluidization. Then we clarify that
these modes are relevant in the AF scenario as they spon-
taneously emerge at the onset of slip instabilities, in the
absence of perturbations.

We study the AF mechanism through the numerical
investigation of a granular fault model that reproduces
the main statistical features of real earthquake occur-
rence [20, 21]. The model consists of N = 1000 spherical
grains of mass m and diameter d, representing the fault
gouge, confined between two rough rigid layers of size
Lx × Ly = 20 d × 5 d, at constant pressure P0. Grains
interact through a normal viscoelastic interaction and a
tangential frictional one [20, 21]. Periodic boundary con-
ditions are imposed along x and y. A stick slip dynamics
is induced by driving the system via a spring mechanism.
Specifically, one extreme of the spring is attached to the
top plate, while the other moves along x at constant ve-
locity vd. Accordingly, if the plate does not move the
shear stress σ = σxy increases at a rate kdvd/LxLy, where
kd is the spring elastic constant. Details on the model and
preparation of the initial condition are given in the Sup-
plementary Materials. We measure the mass in units of
m, the lengths in units of d and time in units of

√

m/kd.

The confining pressure is P0 = kd/d, vd = 0.01 d/
√

m/kd
and the temporal integration step of the equations of mo-
tion is 5 · 10−3

√

m/kd. For these values of the parame-
ters, the fault width slightly fluctuates around W ≃ 10 d
and the system exhibits a stick-slip motion [20–22], as
shown in Fig. 1. We identify slips imposing a threshold
10−4 on the top plate velocity. We have previously shown
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FIG. 1: (color online) Time evolution of the top plate position.
The inset shows the evolution in a large time interval, while
the main panel focuses on a shorter time interval following
time ts0 = 0. In this shorter interval we observe three small
slips, at time ts0 , ts1 = 321 and ts2 = 576, and a large one at
time ts3 = 890.

that the slip size distribution of this model has a power
law regime in agreement with the Gutenberg-Richter law
observed for earthquakes [20, 21], and a bump at large
slips related to the system size.
In the following we focus on the temporal window

[ts0 : ts3 ] illustrated in Fig. 1, but analogous results
are observed in other temporal intervals. In this time
window we observe three small slips, at times ts0 =
0, ts1 and ts2 , where the displacement of the top plate
δx(tsj ) < 0.1d followed by a large slip, at time ts3 with
δx(ts3 ) ≃ Lx. Both small and large slips involve the
rearrangement of all grains inside the fault. In partic-
ular, the velocity profile during all slips (Supplemen-
tary Fig. 3) is compatible with a laminar flow indicat-
ing that slip instabilities correspond to a transition from
a jammed solid-like to an unjammed fluid-like configu-
ration. Our goal is to understand whether an acoustic
perturbation can cause this fluidization, and whether in
absence of perturbations spontaneous acoustic emissions
occur at slip instabilities. To mimic an acoustic per-
turbation resulting from an incoming seismic wave, at
each time t we consider a replica of the unperturbed
system. Each replica is then perturbed by means of a
series of n sinusoidal stress pulses of total duration τ ,
in absence of the external drive (vd = 0). Specifically,
either we force the shear stress to vary by σ±(tp, t) =

±ασ(t)
2

[

1− sin(π2 + ω(tp − t))
]

, or the confining pressure

by P±(tp, t) = ±αP0

2

[

1− sin(π2 + ω(tp − t))
]

, where t in-
dicates that we are considering the replica taken at time t,
whereas tp refers to the time evolution of the perturbed
system. In the Supplementary Materials we show that
purely sinusoidal perturbations lead to analogous results.
We fix the duration of each perturbation to τ = 10

and consider frequencies ω leading to n = τω
2π ∈ [1, 103]

pulses, restricting to the linear response regime α ≪ 1.
In this regime the perturbing pressure is much smaller
than the confining one, and it is not able to induce the
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FIG. 2: (color online) (a) Time dependence of the system’s
response Π+(t,W − 1) to perturbations increasing the con-
fining pressure, at different frequencies. (b) The response
Π+(t, z) for grains belonging to different vertical positions z.
(c) Frequency dependence of the advance time ∆ta of the slips
occurring at times ts1 , ts2 and ts3 , induced by perturbation
P+(t). (d) As in panel c, for single pulse perturbations in-
creasing the pressure (full symbols) or decreasing the shear
stress (open symbols). Panels (e–f) show that the character-

istic triggering frequency scales as ωtr ∝ k
1/2
n /W , with kn

grain stiffness and W fault width.

detachment of the grains from the confining plates. The
situation is different from the procedure applying a me-
chanical vibration to the the bottom substrate as in the
study of ref. [18, 19]. In this case, indeed, for a given
amplitude of the applied vibration there is a range of
frequency leading to the detachment from the bottom
substrate. We also note that the perturbations σ+ and
P− correspond to an increase of the shear stress and to
a reduction of the confining pressure, respectively, and
are thus expected to facilitate failure. Conversely the
perturbations σ− and P+ should inhibit failure.

The perturbation leads to a global rearrangement of
grains inside the system. We thus quantify the ef-
fect of the perturbation by means of the displacement
∆x(t, z) = xα(t + τ, z) − x0(t + τ, z), where xα(t + τ, z)
is the average position of all grains with vertical position
∈ [zd, zd + d) after the perturbation has been applied,
and x0(t + τ, z) ≃ x0(t, z) is their average unperturbed
position. We use these displacements to estimate the
frictional weakening in response to the the perturbations
P± and σ± via the parameters Π±(t, z) = ∆x(t, z)/αP0
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and Σ±(t, z) = ∆x(t)/ασ(t, z). In the following, we
mainly focus on the top plate response Π±(t,W − 1) or
Σ±(t,W − 1) and report results obtained in the linear
response regime (α < 0.05), where P± and σ± are α in-
dependent.
We first consider the response to an increase of the con-

fining pressure, expecting to observe Π+ ≃ 0 since a pres-
sure increase is supposed to keep a system in a jammed
state. Indeed, Fig. 2a shows that for most frequencies
Π+ ≃ 0, as long as t is not very close to a slip occurrence
time. However, for ω = 1.7π the response is significantly
different than zero at all times. To investigate the fre-
quency dependence of the response, we observe that an
external perturbation applied at a time t < ts induces a
displacement ∆x(t,W −1) which is smaller but compara-
ble to the one observed in the unperturbed system when
the failure occurs at time ts, δx(ts). The induced dis-
placement ∆x(t,W−1) becomes larger and larger as t ap-
proaches ts and can be used to define the ‘advance time’,
∆ta, by the condition ∆x(ts − ∆ta,W − 1) = βδx(ts).
The advance time depends on both α and β, increasing
with α and decreasing with β. In Fig. 2b we plot the
frequency dependence of ∆ta for α = 0.02 and β = 0.2
for all the considered slips. The behavior of ∆ta indi-
cates that compressive perturbations trigger failure when
their frequency falls in a given range, the triggering be-
ing most effective at a particular frequency, ωtr = 1.7π.
For larger values of β, ∆ta converges to a delta function
centered in ωtr. Fig. 2c shows that analogous results are
obtained when a single pulse is applied, and thus clarifies
that triggering is related to the frequency of the pertur-
bation, not to its duration. Moreover the perturbation
does not only cause the displacement of the top plate
but involves a non-local rearrangement of all granular
layers. This is clearly enlightened by Fig. 2b where we
plot the response Π+(t, z), at frequency ωtr for different
values of z. We observe that the external perturbation
induces the displacement of all system layers, with a slip
profile consistent with a laminar flow. Similar behavior
is observed for the other temporal windows considered,
with the response Π+ monotonically increasing with the
slip amplitude δx(ts) (see Supplementary Fig. 4). We
also note that the magnitude of the system’s response is
affected by the viscoelastic nature of the interaction be-
tween the grain, and increases (decreases) if this interac-
tion becomes less (more) dissipative (see Supplementary
Fig. 7).
We interpret the above results in terms of the fluidiza-

tion induced by the presence of acoustic waves scatter-
ing into the system. These waves propagate with ve-
locity va =

√

M/ρ, where M is the P -wave modulus,
and thus need a time Ta = 2W/va to reach the bot-
tom plate and return to the top. For a single grain
under a hydrostatic pressure M ≃ kn/6d, and using
ρ ≃ mN/(LxLyW ) the typical AF resonant frequency is

ωaf = 2π/Ta = (π/W )
√

kn/(6dρ). By performing simu-
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FIG. 3: (color online) The left column illustrates the response
of the top plate to perturbations decreasing the confining pres-
sure (a), increasing the shear stress (b), or decreasing the
shear stress (c). The right column illustrates the frequency
dependence of the advance time, which is peaked around the
acoustic fluidization frequency ωaf ≃ 1.5π. Symbols are as in
Fig. 2b.

lations with different grain stiffnesses and system widths,
we have verified that the triggering frequency is in agree-
ment with ωaf , as illustrated in Fig. 2d–e. This proves
that the AF mechanism is at work in the response of
our system to the considered perturbation. The same
conclusion is reached investigating the response to per-
turbations Π− decreasing the confining pressure, as sum-
marized in Fig. 3a. Since reducing the pressure induces
failure, in this case the system is expected to be more sen-
sitive to the perturbation, and therefore we do observe
Π− > Π+ and a not-negligible response at all times. The
frequency dependence of the advance time clarifies that
also in this case the system is more susceptible to pertur-
bations with a frequency close to ωaf , in agreement with
the AF scenario.

We now analyze the response to perturbations in the
shear stress, Σ±(t,W − 1) (Fig. 3b–c). The perturbation
σ+ increases the shear stress, and it is therefore equiv-
alent to a reduction of the time to the next slip. It is
possible to show, indeed, that Σ+ is larger for longer
perturbation durations τ . For a fixed τ , as in Fig. 3b,
a weak dependence on ω can be still observed with a
larger response for ωtr = 1.4π. Conversely, the pertur-
bation σ− should inhibit the top plate displacement and
therefore we would expect Σ− ≃ 0. This is the case ex-
cept at ωtr = 1.4π where Σ− is larger than zero in a
wide temporal range. Note that the characteristic fre-
quency observed in the response to perturbations in the
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shear stress is very close to that characterizing the re-
sponse to perturbations applied to the pressure, and the
two are found to scale in the same way with the system
width and the grain stiffness. Overall, these results indi-
cate that AF can be triggered by perturbations applied
along any direction, and provide a possible explanation
of triggering caused by transient seismic waves regardless
the fault orientation. Nevertheless, since seismic waves
from remote earthquakes present small frequency signals
(ω . 1 Hz), assuming va ∼ 1 km/sec, AF represents
a realistic mechanism only for fault widths W & 103 m,
much larger than typical experimental values [3, 15]. The
AF scenario can be still recovered if seismic waves are
able to excite a local source of high frequency energy or
if seismic wave velocity abruptly decreases entering the
fault granular gouge. This velocity reduction can be at-
tributed to spatial heterogeneity of the granular medium
as measured in experiments with glass beads [23].
Having clarified the relevance of AF in the response of

the system to external perturbations, we now show that
acoustic emissions can spontaneously appear and weaken
a fault, inducing its failure, as suggested in ref. [2]. A
similar mechanism has been used to rationalize the com-
paction of sand grains under shear [13]. We test this
hypothesis by investigating whereas, in the unperturbed
system, changes in the features of particle motion suggest
the emergence of acoustic waves on approaching failure.
To do so, at each time t, we create a replica of the system
decoupled from the external drive (vd = 0) and follow its
spontaneous relaxation in the subsequent time interval.
We evaluate the time dependence of the power spectral
density Ĉ(t, ω) obtained from the autocorrelation func-
tion of the particle velocities ~vi,

C(t, t′) =

∑N

i=1 ~vi(t) · ~vi(t
′)

∑N

i=1 ~vi(t) · ~vi(t)
.

We present in Fig. 4a the map of log(|Ĉ(t, ω)|) for dif-
ferent values of ω and t ∈ [0, ts3 − 10] [24]. The dashed
vertical black lines indicate the slip occurrence times ts1
and ts2 . Fig. 4a shows that oscillations at the character-
istic frequency appear at the onset of each slip. Their
amplitude then decreases roughly exponentially in time,
as observed in Fig. 4b. This figure also shows that os-
cillations at other frequencies are essentially unaffected
by the slips. This behavior is systematically observed in
other slip sequences.
Figure 4 is consistent with a scenario where, as soon

as acoustic oscillations spontaneously form inside the sys-
tem, the confining pressure is reduced inducing slip oc-
currence. To investigate this hypothesis, in Fig. 5 we
focus on the behavior of |Ĉ(t, ωaf)| in a temporal period
centered at the slip occurrence time. In the figure we also
plot the evolution of C(t, t′) as function of t′ − t for nine
different values of t.
In temporal intervals distant from the slip occurrence
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FIG. 5: (color online) (Panel a) Time dependence of the power

spectral density at the characteristic frequency |Ĉ(t, ωaf)|, in
a temporal interval centered at the slip occurrence time ts1 .
The bottom panels illustrate the temporal evolution of C(t, t′)
evaluated at different times t indicated in panel (a) as open
blue squares for ts1−t > 2 (panel b), filled red circles ts1−t <
2 (panel c) and filled green squares t− ts1 > 2 (panel d).

times C(t, t′) is structureless, leading to |Ĉ(t, ωaf)| ≃ 0.
The same behavior is observed up to times ts − t > 2
before the slip. Interestingly, as soon as the slip is ap-
proaching (ts − t < 2), oscillations at the characteristic
frequency ωaf appear in C(t, t′) and indeed |Ĉ(t, ωaf)|
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drastically increases. These oscillations are still present
even in temporal periods after the slip, but their ampli-
tude decreases in time. This result evidences that spon-
taneous oscillations appear at ωaf just at the onset of the
slip, favoring system failure. In the Supplementary Fig.5
we show that the same pattern is recovered for another
slip at time ts2 .
Summarizing, our results strongly support the validity

of the AF scenario by proving that the system is sus-
ceptible to external perturbations with a characteristic
frequency, and that in absence of perturbations acoustic
vibrations at this characteristic frequency spontaneously
emerge at the onset of failure. Accordingly, these oscil-
lations are able to cause a slip instability regardless of
their origin.
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