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When the constituent spins have an energetic preference to lie along an easy-axis, triangular
and Kagome lattice antiferromagnets often develop long-range order that distinguishes the three
sublattices of the underlying triangular Bravais lattice. In zero magnetic field, this three-sublattice
order melts either in a two-step manner, i.e. via an intermediate phase with power-law three-
sublattice order controlled by a temperature dependent exponent η(T ) ∈ ( 1

9
, 1

4
), or via a transition

in the three-state Potts universality class. Here, I predict that the uniform susceptibility to a small

easy-axis field B diverges as χ(B) ∼ |B|−
4−18η
4−9η in a large part of the intermediate power-law ordered

phase (corresponding to η(T ) ∈ ( 1
9
, 2

9
)), providing an easy-to-measure thermodynamic signature of

two-step melting. I also show that these two melting scenarios can be generically connected via an
intervening multicritical point, and obtain numerical estimates of multicritical exponents.

PACS numbers: 75.10.Jm

In frustrated antiferromagnets [1, 2], magnetic ions
(spins) form a lattice whose geometry causes the dom-
inant antiferromagnetic interactions between neighbours
to compete with each other. This allows weaker further-
neighbour interactions or quantum fluctuations to se-
lect complex patterns of spin order at low temperature.
Models of frustrated easy-axis antiferromagnets [3, 4], in
which spins can lower energy by orienting along a fixed
axis, provide interesting examples of this behaviour.

Such models are also relevant in other experimental
contexts. For instance, the low-temperature behaviour
of monolayers of adsorbed gases on substrates with tri-
angular symmetry [5–11] has been modeled [12] in terms
of a triangular lattice of Ising spins σz~R = ±1 (ẑ com-

ponents of spin-half moments ~S~R = ~σ~R/2) with antifer-
romagnetic Ising interactions Jσz~Rσ

z
~R′

between nearest-

neighbours [13, 14] and weak ferromagnetic Ising inter-
actions between further-neighbours. More recently, the
magnetic properties of honeycomb networks [15–18] of
magnetic wires (dubbed artificial Kagome-ice) have been
analyzed [19–21] in terms of a similar Ising model on the
Kagome lattice [22]. In both examples, further-neighbour
couplings cause the Ising spins to develop ferrimagnetic
three-sublattice order at low temperature, i.e., freeze into
a pattern which distinguishes the three sublattices of the
underlying triangular Bravais lattice and gives rise to a
small net moment along the easy axis.

Several other easy-axis spin systems on triangular and
Kagome lattices exhibit ferrimagnetic three-sublattice or-
der [23–34], or closely related antiferromagnetic (no net
easy-axis moment) three-sublattice order [35]. In zero
field (B = 0) along the easy-axis, a Ginzburg-Landau
theory [36–38] for the three-sublattice order parameter
predicts that this ordering transition is described by a
six-fold anisotropic effective model of ferromagnetically
coupled XY spins [39], or, equivalently, by a generalized
six-state clock model [40–43]. Rather unusually, such six-

state clock models have multiple generic possibilities for
continuous transitions: Order is lost either via a two-step
melting transition, with an intermediate phase character-
ized by power-law order [39], or via a sequence of two dis-
tinct transitions, one of which is in the three-state Potts
universality class and the other in the Ising universality
class [40, 41]. Perhaps motivated by this, the melting
of three-sublattice order has been studied in a variety
of triangular and Kagome lattice systems for over three
decades now. In some examples [12, 23–26, 35], three-
sublattice order is known to melt in a two-step manner,
via a sizeable intermediate phase with power-law three-
sublattice order controlled by a temperature-dependent
exponent η(T ) ∈ ( 1

9 ,
1
4 ). In other examples with fer-

rimagnetic three-sublattice order, this order is lost via
a three-state Potts transition, while residual ferromag-
netism is lost via an Ising transition [19–21].

In this Letter, I analyze the melting of three-sublattice
order in easy-axis antiferromagnets on triangular and
Kagome lattices using a new coarse-grained description
that explicitly keeps track of the uniform easy-axis mag-
netization mode whose fluctuations are coupled to fluctu-
ations of the three-sublattice order parameter. Using this
description, which goes beyond the standard Ginzburg-
Landau theory, I demonstrate that these two very dif-
ferent melting processes can be generically connected via
an intervening multicritical point M (Fig. 2) with cen-
tral charge [44] cM ∈ (1, 3

2 ). Although the generalized
six-state clock model correctly captures other generic
ways [40, 41] in which these two very different melting
processes can be separated from each other in the phase
diagram of such three-sublattice ordered systems, it fails
to account for the existence of M. This underscores the
importance of treating the uniform magnetization mode
on the same footing as the three-sublattice order param-
eter.

I obtain numerical estimates of multicritical exponents,
and argue that such multicritical melting may be experi-
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mentally accessible in artificial Kagome-ice systems if the
strengths of nearest and next-nearest exchange interac-
tions can be increased relative to the long-range dipo-
lar interactions. Additionally, for η(T ) ∈ ( 1

9 ,
2
9 ) in the

power-law ordered phase associated with two-step melt-
ing, I show that the uniform susceptibility to a small easy-

axis field B diverges as χ(B) ∼ |B|−
4−18η
4−9η . I also argue

that this easy-to-measure thermodynamic signature is of
potential experimental relevance in the context of three-
sublattice ordering of nearly-half-filled monolayers of ad-
sorbed gases on triangular substrates, and in the context
of experimental realizations of three-sublattice order in
S = 1 Heisenberg antiferromagnets with strong single-ion
anisotropy on the triangular lattice.

Order parameters and coarse-graining: I use the
convention of Fig. (1) for labeling the sites [unit-cells]
~R = mêx + nêy of the triangular [Kagome] lattice, and
for labeling the three basis sites α = 0, 1, 2 in each unit-
cell of the Kagome lattice. With this convention, the
complex three-sublattice order parameter ψ ≡ |ψ|eiθ and
the ferromagnetic order parameter Mz are defined as:
ψ = −

∑
~R e

i 2π3 (m+n)Sz~R and Mz =
∑

~R S
z
~R

on the tri-

angular lattice, while ψ = −
∑

~R,α e
i 2π3 (m+n−α)Sz~R,α and

Mz =
∑

~R,α S
z
~R,α

on the Kagome lattice. Our coarse-

grained description will be written in terms of an effec-
tive Hamiltonian defined on a lattice whose sites ~r repre-
sent clusters of spins of the original triangular or Kagome
magnet. In this description, each cluster is characterized
by an Ising variable τ~r = ±1 representing the direction
of the local easy-axis magnetization Mz

cluster, and by an
angle θ~r that represents the phase of the local three-
sublattice order parameter ψcluster. Comparison with
long-wavelength properties of specific microscopic models
is facilitated by choosing clusters that themselves form a
coarse-grained triangular lattice, since this preserves the
symmetries of the underlying triangular Bravais lattice
in both triangular and Kagome lattice systems.

Ginzburg-Landau theory: Let us begin by summa-
rizing in this language the standard Ginzburg-Landau
theory for three-sublattice ordering [36–38]: Transfor-
mation properties of ψ under global spin-flip and lattice
symmetry operations fix the form of the effective Hamil-
tonian Hxy for θ~r. Leaving out certain chiral perturba-
tions [45–47] that are not expected to be relevant [48] for
the transitions of the lattice magnets studied here, Hxy

may be written as

Hxy = −Jxy

∑
〈~r~r′〉

cos(θ~r − θ~r′)− h6

∑
~r

cos(6θ~r) . (1)

where 〈~r~r′〉 are nearest-neighbour links of our coarse-
grained triangular lattice. The effective stiffness Jxy > 0
(encoding the energetic preference for three-sublattice
order) and the six-fold anisotropy h6, whose sign se-
lects between ferrimagnetic three-sublattice order (with

θm = 2πm/6) and antiferromagnetic three-sublattice or-
der (θm = (2m + 1)π/6), are both set by quantum fluc-
tuations and subdominant further-neighbour couplings
in the microscopic Hamiltonian. In this approach, the

relative values of Jxy and its higher harmonics J
(p)
xy (co-

efficients of − cos(pθ~r − pθ~r′) for p = 2, 3) determine the
nature of the melting process. These higher harmonics
are omitted from Hxy displayed above since they are not
crucial for our subsequent discussion.

New effective Hamiltonian: Next, I note that this
standard Ginzburg-Landau description does not take into
account the uniform magnetization mode whose fluctua-
tions are coupled in a crucial way to fluctuations of the
three-sublattice order parameter. This key observation
leads me to a new coarse-grained effective model:

Heff = Hxy +HIsing − Jθτ
∑
~r

τ~r cos(3θ~r) ,

(2)

where HIsing = −JIsing

∑
〈~r~r′〉

τ~rτ~r′ − h
∑
~r

τ~r ,

with h ∝ B. To understand the rationale for the form of
this effective Hamiltonian, it is useful to first note that
Heff has the same S3 × Z2 symmetry as Hxy, and re-
duces, in the double limit h6, Jθτ →∞, to a generalized
six-state clock model studied earlier [40, 41]. However,
the space of states at each site of Heff is enlarged by
the presence of τ~r to correctly account for the fact that
the direction of Mz

cluster is correlated with the phase of
ψcluster, but not completely tied to it. The microscopic
origin of various terms can now be understood as follows:
JIsing > 0 encodes the effect of subleading ferromagnetic
interactions of the microscopic magnet, which tend to
favour ferrimagnetic three-sublattice order. If h6 > 0, it
is likely to be accompanied by a sizeable positive value of
JIsing in Heff (since ferrimagnetic three-sublattice order
corresponds to h6 > 0 in Hxy). Conversely, negative h6,
favoured by quantum-fluctuations in some examples [35],
is likely to be accompanied by negligibly small JIsing. The
coupling Jθτ > 0 correctly captures the fact that the
values θ = 0, 2π/3, 4π/3 (π/3, π, 5π/3), characteristic of
ferrimagnetic three-sublattice order, are associated with
a positive (negative) easy-axis magnetization, while the
phase choices θ = (2m + 1)π/6, characteristic of anti-
ferromagnetic three-sublattice order, are not associated
with any net easy-axis magnetization (Fig. 1).

Phase-diagram of Heff : To deduce the structure of
the h = 0 phase diagram of Heff (Fig (2 A)) in the T -
JIsing plane (with Jxy = 1) for fixed O(1) values of Jθτ
and h6, I start with the known phase diagrams of Hxy

and HIsing, and analyze the effects of a non-zero Jθτ .
To this end, recall that HIsing develops long-range or-
der in τ for T < Tτ , with long-distance properties of
the critical point at Tτ described by a fixed-point free-
energy functional F1/2 =

∫
d2xF1/2, with central charge
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FIG. 1: Color-coded symbols on sites give the value of 〈Sz~r 〉
in the presence of ferrimagnetic (θ = 0) or antiferromagnetic
(θ = π

6
) three-sublattice order in spin-S triangular [Kagome]

lattice easy-axis antiferromagnets. These ordering patterns
distinguish between the three sublattices of the underlying
Bravais lattice of sites [up-pointing triangles].

c = 1/2. Similarly, Hxy develops six-fold symmetry-
breaking long-range order in θ for T < Tθ1, which
melts via an intermediate phase with power-law corre-
lations: 〈ei(θ(~r)−θ(0))〉 ∼ 1/|~r|η(T ) with η(T ) ∈ ( 1

9 ,
1
4 )

for temperatures T ∈ (Tθ1, Tθ2) [42, 43, 49]. Long-
wavelength properties of this power-law ordered phase
are controlled, in renormalization group (RG) language,
by a c = 1 line of fixed points [39], with effective free-
energy FKT =

∫
d2rFKT, where

FKT/T =
1

4πg
(∇θ)2 (3)

with g(T ) ∈ ( 1
9 ,

1
4 ) corresponding to T ∈ (Tθ1, Tθ2). This

fixed-line has power-law correlations 〈ei(θ(~r)−θ(0))〉 ∼
1/rη(g) with η(g) = g, which render the six-fold
symmetry-breaking perturbation h6 cos(6θ~r) irrelevant
for g > 1/9, and vortices in θ irrelevant for g <
1/4 [39]. However, the three-fold symmetric perturbation
h3 cos(3θ~r) is relevant everywhere on this fixed line [39],
implying that long-range order sets in at infinitesimal h3

when T < Tθ2. In contrast, for fixed T > Tθ2, long-range
order sets in via a three-state Potts transition [39](Fig. 2
B) only when a threshold h3c(T ) is crossed; this defines a
three-state Potts critical line Tc(h3) in the (T, h3) phase
diagram of Hxy (Fig. (2 B)). Therefore, our analysis
splits naturally into two cases, Tτ . Tθ2, and Tτ & Tθ2,
and relies crucially on the observation that long-range
order of θ in Hxy leads to an external magnetic field
of effective strength heff ≡ Jθτ 〈cos(3θ)〉 acting on τ in
HIsing, while long-range order of τ in HIsing perturbs Hxy

by a three-fold symmetric term
∑
~r h3eff cos(3θ~r), with

h3eff ≡ Jθτ 〈τ〉.
Tτ . Tθ2: If HIsing is in a short-range correlated

paramagnetic phase in the entire temperature range
(Tθ1, Tθ2), i.e. if Tτ . Tθ1, a non-zero Jθτ only renormal-
izes the value of g(T ) that controls the power-law corre-
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FIG. 2: (Color online) A) Predicted structure of the T -JIsing

phase diagram of Heff for h = 0 and fixed Jxy and Jθτ . Phase
boundaries of Heff are depicted by colour-coded solid lines,
while those ofHIsing andHxy are displayed as dashed lines. B)
Known T -h3 phase diagram of Hxy + h3

∑
~r cos(3θ~r) showing

the three-state Potts line Tc(h3). Path L in A) maps to the
eponymous path in B).

lators of θ in this regime. And when the temperature
is lowered below Tθ1, long-range order of θ in Hxy gives
rise to an effective field heff ≡ Jθτ 〈cos(3θ)〉 in HIsing, con-
verting the Ising transition at Tτ to a smooth crossover.
On the other hand, if Tθ1 . Tτ , long-range order of τ
below Tτ leads to a three-fold symmetric perturbation
h3eff of Hxy, which immediately causes Hxy to develop
long-range order in θ (Fig. 2 B).

Thus, when Tτ . Tθ2, Heff is expected to display a six-
fold symmetry-breaking long-range ordered state for T <
Tc1, which undergoes a two-step melting transition via
an intermediate power-law ordered phase (corresponding
to T ∈ (Tc1, Tc2)) with an exponent η(T ) that increases
from η(Tc1) = 1

9 to η(Tc2) = 1
4 . The value of Tc1 is set

(with deviations of order Jθτ ) by the larger of Tθ1 and
Tτ , while that of Tc2 is approximately set by Tθ2.

Power-law ordered phase: Long-wavelength prop-
erties of Heff in this power-law ordered intermediate
phase can be described quite generally (for either sign
of h6 ) by an effective free-energy density

FτKT/T = FKT/T + cθττ~r cos(3θ~r) . (4)

Although a nonzero cθτ leads, upon tracing over τ , to
the six-fold term cos(6θ~r) which is irrelevant all along
the fixed-line parametrized by cθτ = 0 and g(T ) ∈ ( 1

9 ,
1
4 )

[as in in Eqn. 3], I choose to retain a bare cτθ 6= 0 ex-
plicitly in Eqn. 4 since this “dangerously irrelevant” cou-
pling controls the long-distance correlations of τ~r along
this fixed-line. Indeed, the nonzero value of cθτ in FτKT

causes τ~r to inherit the power-law correlations of cos(3θ~r)
for all T ∈ (Tc1, Tc2): 〈τ~rτ0〉 ∼ 〈e3i(θ~r−θ0)〉 ∼ 1/r9g(T ).
Ferromagnetic couplings between the Ising spins are
not explicitly included in FτKT/T since the Ising bond-
energy E〈~r1~r2〉 ≡ τ~r1τ~r2 has rapidly decaying correla-
tions 〈E〈~r1~r2〉E〈~r3~r4〉〉 ∼ 1/r36g (r is the distance between
bonds 〈~r1~r2〉 and 〈~r3~r4〉) that render these couplings ir-
relevant along this fixed line. Just below g = 1/9 (i.e.
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at separation ~rL = êx
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on periodic L × L triangular

lattices, evaluated at the estimated location [fM
xy , f

M
I ] =

[1.5570, 1.0061] of the multicritical point of Heff with Jxy =
h6 = 1.0, Jθτ = 0.25 (notation as in text). Lines denote fits
to 1/Lητ and 1/Lηpθ respectively, using η3θ = ητ = 0.201,
ηθ = 0.258, and η2θ = 0.353. C2θ [C3θ] is rescaled by a factor
of 7 [factor of 10] for clarity.

for T < Tc1), the ferromagnetic couplings between the τ~r,
and the six-fold anisotropy term cos(6θ~r), both become
relevant. This signals the onset of six-fold symmetry-
breaking long-range order in Heff .

Singular susceptibility: For η(T ) < 2
9 in this

power-law ordered intermediate phase of Heff , the fore-
going implies that power-law correlations of τ decay
slowly enough that they lead to a divergent contribu-
tion χsing. ∼ L2−9η to the finite-size susceptibility χL
of an L × L system at h = 0. This implies χL(T ) =
χreg(T ) + b(T )L2−9η(T ) for η(T ) ∈ ( 1

9 ,
2
9 ). When an

external field h is turned on in this regime, it per-
turbs FτKT with a three-fold symmetric perturbation
Jθτχregh cos(3θ~r). This drives Heff to a long-range or-
dered state with correlation length ξ(h) ∼ |h|−1/λ3(g),
where λ3(g) = 2 − 9g/2. Beyond this correlation-length
scale, Heff resembles a three-state Potts model in its or-
dered state [39]. Therefore, for small non-zero h, χsing.

will be cut off at length-scales of order this correlation
length ξ(h), giving rise to a thermodynamic susceptibility
that scales as (ξ(h))2−9η(T ) at small h. For the thermo-
dynamic easy-axis susceptibility of the microscopic easy-
axis antiferromagnet, the foregoing analysis thus predicts

χ(B) ∼ |B|−
4−18η(T )
4−9η(T ) (5)

at small |B| for η(T ) ∈ ( 1
9 ,

2
9 ). This prediction identi-

fies an experimentally useful signature of two-step melt-
ing of either type (ferrimagnetic or antiferromagnetic)
of three-sublattice order in triangular and Kagome lat-
tice easy-axis magnets. In particular, it applies to the
S = 1 triangular lattice Heisenberg antiferromagnet with

strong single-ion anisotropy [29, 33], and to the triangular
lattice Ising antiferromagnet with further-neighbour cou-
plings [12]. It would therefore be interesting to identify
quasi two-dimensional magnets in the Ca3Co2O6 fam-
ily [50, 51] (with an angular momentum J = 1 ion at
one Co site and a nonmagnetic ion at the other) which
could provide experimental realizations of the former. It
would also be interesting to identify new combinations
of substrate and adsorbate for which monolayer densities
closer to half-filling (than hitherto achievable [5–11]), cor-
responding to B � 1 in the latter, could be reached for
monolayers of adsorbed gases on triangular substrates.

Tτ & Tθ2: In this case, Heff develops long-range or-
der in τ via a transition in the Ising universality class
at TcI (Fig 2 A), with the value of TcI set by Tτ (with
deviations of order Jθτ ). For T < TcI , the spontaneous
magnetization 〈τ〉 perturbs Hxy with the three-fold field
h3eff . Lowering the temperature below TcI along path
L in the phase diagram of Heff (Fig. 2 A) therefore cor-
responds to moving along the eponymous path L in the
known [39] phase diagram of Hxy+h3

∑
~r cos(3θ~r) (Fig. 2

B). This key observation immediately leads to two con-
clusions: First, Heff must develop long-range order in θ
at a lower temperature TcP < TcI via a three-state Potts
transition (Fig. 2 A). Second, these Ising and three-state
Potts transition lines (TcI and TcP ) must meet the phase
boundaries of the power-law ordered phase (Tc2 and Tc1)
at a single multicritical point M (Fig. 2 A).

Multicritical point: The fixed point theory FM that
controls long-distance properties of M can be reached
from the c = 3/2 theory F1/2 + FKT (with g = 1/4) by
turning on the relevant perturbation Jθτ . The c-theorem
[44] therefore predicts that the central charge of FM

obeys cM < 3
2 . Since FM must have a relevant direction

leading from it to the c = 1 theory FτKT, the c-theorem
also predicts cM > 1. At M, the correlation func-
tions Cτ (~r) = 〈τ(~r)τ(0)〉 and Cpθ(~r) = 〈eipθ(~r)e−ipθ(0)〉
(p = 1, 2, 3) are expected to have the long distance forms:
Cτ (~r) = 1/rητ , Cpθ(~r) ∼ 1/rηpθ (with η3θ = ητ on sym-
metry grounds). Setting Jxy = h6 = 1.0, Jθτ = 0.25
and parametrizing JIsing = fxyTθ1/Tτ and T = fIfxyTθ1,
with Tθ1 = 1.04 and Tτ = 3.6409, I have performed ex-
tensive Monte-Carlo simulations of Heff to locate and
study M. Fig 3 displays power-law fits for the L depen-
dence of Cτ (~rL) and Cpθ(~rL) at separation ~rL = L

3 êx on
periodic L×L triangular lattices at my best estimate for
M, given by [fMxy , f

M
I ] ≈ [1.5570(8), 1.0061(5)]. Such fits

yield the following estimates for multicritical exponents:

η3θ = ητ ≈ 0.201(20) ; ηθ ≈ 0.258(5) ; η2θ ≈ 0.353(6) . (6)

This set of exponents is clearly different from the well-
known exponents in the power-law ordered phase [ηpθ =
p2η(T )], or on the three-state Potts line [η2θ = ηθ = 4/15]
or the Ising line [η3θ = ητ = 1/4].

I close by noting an intriguing possibility: Since three-
sublattice order melts via a three-state Potts transition
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in the Kagome Ising antiferromagnet with dipolar inter-
actions [19–21], while the analogous short-ranged model
with nearest and next-nearest neighbour exchange cou-
plings exhibits two-step melting behaviour [21, 23, 24],
it appears likely that such multicritical melting could be
seen in artificial Kagome-ice systems if the strength of the
first and second-neighbour exchange interactions could
be increased relative to the long-range dipolar couplings
(whose values are fixed by magnetostatics).

I thank F. Alet, M. Barma, D. Dhar, and R. Kaul for
useful comments on an earlier draft, G. Mandal, S. Min-
walla, and S. Trivedi for a survey of well-known c > 1 con-
formal field theories, and R. G. Ghanshyam for help with
figures. The numerical work described here was made
possible by the computational resources of the Dept. of
Theoretical Physics of the TIFR. A major part of the
analysis reported here was completed while participating
in the Program on Frustrated Magnetism and Quantum
Spin Liquids at KITP Santa Barbara, where this work
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