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Topological quantum states with non-Abelian Fibonacci anyonic excitations are widely sought after for the

exotic fundamental physics they would exhibit, and for universal quantum computing applications. The frac-

tional quantum Hall (FQH) state at filling factor ν = 12/5 is a promising candidate, however, its precise nature

is still under debate and no consensus has been achieved so far. Here, we investigate the nature of the FQH

ν = 13/5 state and its particle-hole conjugate state at 12/5 with the Coulomb interaction, and address the issue

of possible competing states. Based on a large-scale density-matrix renormalization group (DMRG) calcula-

tion in spherical geometry, we present evidence that the essential physics of the Coulomb ground state (GS) at

ν = 13/5 and 12/5 is captured by the k = 3 parafermion Read-Rezayi state (RR3), including a robust exci-

tation gap and the topological fingerprint from entanglement spectrum and topological entanglement entropy.

Furthermore, by considering the infinite-cylinder geometry (topologically equivalent to torus geometry), we ex-

pose the non-Abelian GS sector corresponding to a Fibonacci anyonic quasiparticle, which serves as a signature

of the RR3 state at 13/5 and 12/5 filling numbers.

Introduction.— While fundamental particles in nature are

either bosons or fermions, the emergent excitations in two-

dimensional strongly-correlated systems may obey fractional

or anyonic statistics [1, 2]. After two decades of study [3–

13], current interest in exotic excitations focuses on states

of matter with non-Abelian quasiparticle excitations [14–16],

and their potential applications to the rapidly evolving field of

quantum computation and cryptography [17–22]. So far the

most promising platform for realization of non-Abelian statis-

tics is the fractional quantum Hall (FQH) effect in the first

excited Landau level, and two of the most interesting exam-

ples are at filling factors ν = 5/2 and 12/5. The ν = 5/2
state is widely considered to be the candidate for the Moore-

Read state hosting non-Abelian Majorana quasiparticles [14–

16]. Experiments have revealed that the 12/5 state appears

to behave differently from the conventional FQH effect [5, 8],

and may also be a candidate state for hosting non-Abelian ex-

citations. However, the exact nature of the FQH 12/5 state is

still undetermined due to the existence of other possible com-

peting candidate states.

Several ground-state (GS) wavefunctions have been pro-

posed [16, 25, 29–32] as models for the observed FQH ef-

fect at ν = 12/5 [5, 8, 13]. The most exciting candi-

date is the k = 3 parafermion state proposed by Read and

Rezayi (RR3)[16]. This RR3 state describes a condensate of

three-electron clusters that forms an incompressible state at

ν = 13/5 [16]. One can also construct the particle-hole part-

ner of the RR3 state to describe the 12/5 FQH effect. Be-

sides the RR3 state, some competing candidates for ν = 13/5
or 12/5 exist: a hierarchy state [26, 27], a Jain composite-

fermion (CF) state [28], a generalization of the non-Abelian

Pfaffian state by Bonderson and Slingerland (BS) [29, 30],

and a bipartite CF state [31, 32]. So far, the true nature of

the 12/5 and 13/5 FQH states remains undetermined. The

main challenges in settling this issue are the limited compu-

tational ability and the lack of an efficient diagnostic method.

For example, from exact diagonalization (ED) calculations in

the limited feasible range of system sizes, it is found that the

overlaps between the Coulomb GS at ν = 12/5 and different

model wavefunctions are all relatively large [16, 30], while

the extrapolated GS energies of the RR3 and BS states are

very close in the thermodynamic limit [30, 33]. Taken as a

whole, previous studies have left the nature of the Coulomb

GS at ν = 13/5 and 12/5 unsettled.

Recently, there has been growing interest in connecting

quantum entanglement [34–37] with emergent topological or-

der [38, 39] in strongly interacting systems, which offers a

new route to identification of the precise topological order

of a many-body state. Although characterization of entan-

glement has been successfully used to identify various well-

known types of topological order [40–47], application of the

method to a system with competing phases still faces chal-

lenges when ED studies suffer from strong finite size effects,

and other methods such as quantum Monte-Carlo suffer from

sign problems. The recent development of the high efficiency

density-matrix renormalization group (DMRG) in momentum

space [44, 54] allows the study of such systems in sphere and

cylinder geometries, both of which can be used to make con-

crete predictions of the physics of real systems in the ther-

modynamic limit. Here we combine these advances, and use

these two geometries to address the long-standing issues of

the FQH at ν = 12/5 and 13/5.

In this paper, we study the FQH at ν = 12/5 and 13/5
filling by using the state-of-the-art density-matrix renormal-

ization group (DMRG) numerical simulations. By studying

large systems up to Ne = 36 on spherical geometry, we es-

tablish that the Coulomb GS at ν = 13/5 is an incompress-

ible FQH state, protected by a robust neutral excitation gap

∆n ≈ 0.012(e2/lB). Crucially, we show that the entangle-

ment spectrum (ES) fits the corresponding SU(2)3 conformal

field theory (CFT) which describes the edge structure of the

parafermion RR3 state. The topological entanglement entropy

(TEE) is also consistent with the predicted value for the RR3

state, indicating the emergence of Fibonacci anyonic quasipar-

ticles. Moreover, we also perform a finite-size scaling analy-

sis of the GS energies for ν = 12/5 states at different shifts
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corresponding to the particle-hole-conjugate of the RR3 state,

the Jain state and BS state. Finite-size scaling confirms that

the ground state with topological shift S = −2(3) (where

RR3 and its particle-hole partner states are expected to occur)

is energetically favored in the thermodynamic limit. Finally,

to explicitly demonstrate the topological degeneracy, we ob-

tain two topological distinct GS sectors on the infinite cylin-

der using infinite-size DMRG. While one sector is the identity

sector matching to the GS from the sphere, the new sector is

identified as the non-Abelian sector with a Fibonacci anyonic

quasiparticle through its characteristic ES and TEE. Thus we

establish that the essence of the FQH state at ν = 13/5 is

fully captured by the non-Abelian parafermion RR3 state (and

by its particle-hole conjugate at ν = 12/5) and show that it is

stable against perturbations as we change the Haldane pseu-

dopotentials and the layer width of the system.

Model and Method.— We use the Haldane representation

[26, 48, 49] in which the Ne electrons are confined on the sur-

face of a sphere surrounding a magnetic monopole of strength

Q. In this case, the orbitals of the n-th LL are represented as

orbitals with azimuthal angular momentum−L,−L+1, ..., L,

with L = Q+n being the total angular momentum. The total

magnetic flux through the spherical surface is quantized to be

an integer Ns = 2L. Assuming that electron spins are fully-

polarized and neglecting Landau-level mixing, the Hamilto-

nian in the spherical geometry can be written as:

H =
1

2

∑

m1+m2=m3+m4

〈m1,m2|V |m3,m4〉â†m1
â†m2

âm3
âm4

where â†m (âm ) is the creation (annihilation) operator at the

orbital m and V is the Coulomb interaction between electrons

in units of e2/lB with lB being the magnetic length. The two-

body Coulomb interaction element can be decomposed as

〈i, j|V |p, q〉 =
2L
∑

l=0

l
∑

m=−l

〈L, i;L, j|l,m〉〈l,m|L, p;L, q〉Vn(l)

where 〈L, i;L, j|l,m〉 is the Clebsch-Gordan coefficients and

Vn(l) is the Haldane pseudopotential representing the pair en-

ergy of two electrons with relative angular momentum 2L− l
in n-th LL [26, 71]. For electrons at fractional filling factor ν,

Ns = ν−1Ne − S, where S is the curvature-induced “shift”

on the sphere.

Our calculation is based on the unbiased DMRG method

[50–55], combined with ED. The (angular) momentum-space

DMRG allows us to use the total electron number Ne and the

total z-component of angular momentum Ltot
z =

∑Ne

i=1
mi as

good quantum numbers to reduce the Hilbert subspace dimen-

sion [54]. Here, we report the result at ν = 13/5(12/5) with

electron number up to Ne = 36(22) by keeping up to 30000
states with optimized DMRG, which allows us to obtain accu-

rate results for energy and the ES on much larger system sizes

beyond the ED limit (NED
e = 24(16) at ν = 13/5(12/5)).

Groundstate Energy, Energy Spectrum and Neutral Gap.—

We first compute the GS energies for a number of systems up
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FIG. 1: (a) The groundstate energy per electron (blue dots) corre-

sponding to the ν = 13/5 state. The blue line shows the extrapo-

lated values obtained using a quadratic function of 1/Ne. The red

dots shows the rescaling energy by a renormalized magnetic length

and the red line is the linear fitting. (b) The neutral gap ∆n for

13/5 state as a function of the 1/Ne (b is the layer-width parame-

ter [71]). Inset: Energy spectrum versus total angular momentum

Ltot for Ne = 21. ∆n is defined as the energy difference between

the lowest energy state (in Ltot = 0) and the first excited state (in

Ltot 6= 0).

to Ne = 36 at ν = 13/5, with a shift S = 3 consistent with

the RR3 state. As shown in the low-lying energy spectrum

in the inset of Fig. 1(b) obtained from ED for Ne = 21, the

GS is located in the Ltot = 0 sector and is separated from

the higher energy continuum by a finite gap, which signals an

incompressible FQH state. The extrapolation of the GS en-

ergy to the thermodynamic limit can be carried out using a

quadratic function of 1/Ne (blue line), or a linear fit in 1/Ne

(red line) after renormalizing the energy by
√

2Qν/Ne to take

into account the curvature of the sphere [56], as shown in Fig.

1(a). We obtain the E0/Ne = −0.38458(24) (blue line) and

−0.38487(9) (red line), which demonstrates consistency be-

tween the two extrapolating schemes.

We also calculated the neutral excitation gap ∆n at ν =
13/5 [57]. This is equivalent to the energy difference be-

tween the GS and the “roton minimum”[58–60] as illustrated

in the inset of Fig. 1(b). The roton minimum corresponds to

the lowest excitation energy of a quasielectron-quasihole pair

[60]. Fig. 1(b) shows ∆n as a function of 1/Ne, where the

large-system results indicate that the neutral gap approaches

a nonzero value ∆n ≈ 0.012 ± 0.001 for Ne ≥ 21. Since

the Hamiltonian in this paper is particle-hole symmetric, the

neutral gap at ν = 12/5 and 13/5 are expected to be iden-

tical [61]. In addition, if the effect of finite layer-width is

considered[71], the neutral-excitation gap is reduced but still

remains consistent with a nonzero value (Fig. 1(b)).

Competing states.— In Fig. 2, we compare the GS ener-

gies per electron of three known candidates for ν = 12/5: the

particle-hole conjugate of the RR3 state with a shift S = −2,

the non-Abelian BS state with S = 2 [29], and Jain state

with S = 4. We find that the lowest-energy state for the

Jain state shift (S = 4) in larger system sizes has a total an-

gular momentum Ltot 6= 0, indicating that it represents ex-

citations of some other incompressible state rather than the

Coulomb GS at ν = 12/5 [32]. Secondly, the GSs with the

RR3 and BS shifts continue to have Ltot = 0 for the systems
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FIG. 2: Finite-size extrapolation of the ground-state (GS) energies

for different shifts corresponding to different candidate states at ν =
12/5. All energies have been rescaled by the renormalized magnetic

length. The angular momentum of the GS is shown whenever it is

nonzero (Ltot 6= 0).

that we have studied, and the extrapolation based on the re-

sult for 10 ≤ Ne ≤ 22 leads to E0/Ne = −0.3425 for the

RR3 state and E0/Ne = −0.3410 for the BS state, respec-

tively. Compared to the previous studies [30, 33], the extrap-

olation errors are reduced by the inclusion of larger system

sizes obtained using DMRG. Our calculations suggest that the

GS state with shift S = −2(S = 3) is energetically favored

at ν = 12/5(13/5). Our results are consistent with the inter-

pretation that the RR3 state describes the true GS (see the full

evidence below), while the other states at nearby shifts corre-

spond to states with quasiparticle or quasihole excitations.

Orbital ES.— Li and Haldane first established that the or-

bital ES of the GS of FQH phase contains information about

the counting of their edge modes [36, 39]. Thus, the orbital

ES provides a “fingerprint” of the topological order, which

can be used to identify the emergent topological phase in a

microscopic Hamiltonian [36, 41–44].

As a model FQH state, the RR3 parafermion state can be

represented by its highest-density root configuration pattern

of “1110011100... 11100111”, corresponding to a general-

ized Pauli principle of “no more than three electrons in five

consecutive orbitals” [62–64]. Consequently, the orbital ES

depends on the number of electrons in the partitioned subsys-

tem [71]. In Fig. 3, we show the orbital ES of three dis-

tinct partitions for system size Ne = 36 for Coulomb GS.

For 3n electrons in subsystem (Fig. 3(a)), the leading ES dis-

plays the multiplicity-pattern 1, 1, 3, 6, 12 in the first five an-

gular momentum sectors ∆LA
z = 0, 1, 2, 3, 4. For 3n + 1 or

3n+ 2 electrons in subsystem (Fig. 3(b-c)), the ES shows the

multiplicity-pattern of 1, 2, 5, 9 in the ∆L = 0, 1, 2, 3momen-

tum sectors. The above characteristic multiplicity-patterns

of the low-lying ES agree with the predicted edge excitation

spectrum of the RR3 state obtained either from its associated

CFT, or the “≤ 3 in 5” exclusion statistics rule [71].

In addition, we vary the Haldane pseudopotentials V1(1)
and V1(3) (keeping all others at their Coulomb-interaction

values), and map out an ES-gap diagram which illustrates

the robustness of the FQH state as the interaction param-
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FIG. 3: (a-c) The low-lying orbital ES of Ne = 36 are shown

for three different partitions. The lower ES level counting in the

sector ∆LA
z = 0, 1, 2, 3, 4 are labeled by color, where ∆LA

z =
LA

z − LA
z,min with LA

z,min as the quantum number where the pri-

mary field occurs. The entanglement gap of orbital ES of Ne = 24 is

shown for partition (d) with 3n electrons and (e) with 3n+1 electrons

in the subsystem as a function of pseudopotential V1(1)/V1
Coul(1)

and V1(3)/V1
Coul(3), where V1

Coul(l) are the Coulomb values of

pseudopotentials. The black point corresponds to the Coulomb point.

eters are changed[65–68]. In Fig. 3, we plot the en-

tanglement gap (for the lowest-Lz ES level)[36, 54] as

a function of V1(1)/V1
Coul(1) and V1(3)/V1

Coul(3), where

V1
Coul(l) are the Coulomb values of pseudopotentials. We

find that the entanglement gap is robust in a region cen-

tered at an approximately-fixed V1(1)/V1(3) ratio (indi-

cated by the white line). Away from that, for the regime

V1(1)/V1
Coul(1) < 0.92 and V1(3)/V1

Coul(3) > 0.98, we

find a rapid drop of the entanglement gap indicating a quan-

tum phase transition. We have also studied the effect of

the ES of modifying the Coulomb interaction with a realistic

layer width (b) [71], and find that the RR3 state persists until

b/lB ∼ 2, which is qualitatively consistent with the results of

varying V1(1) and V1(3).

Topological Entanglement Entropy.— For a two-

dimensional gapped topologically-ordered state, the

dependence of the entanglement entropy SA(lA) of the

subsystem A on the finite boundary-cut length lA has

the form SA(lA) = αlA − γ, where TEE γ is re-

lated to the total quantum dimension D by γ = lnD
[34, 35]. We have extracted the TEE using our largest

system, Ne = 36 [71]. The TEE obtained was

γ = 1.491 ± 0.091, consistent with the theoretically-

predicted value γ = lnD = ln
√

5(1 + φ2) ≈ 1.447 for

the RR3 state, where each non-Abelian Fibonacci anyon

quasiparticle contributes an individual quantum dimension

dF = φ = (
√
5 + 1)/2 (φ denotes the Golden Ratio).

The appearance of dF = φ is a signal of the emergence

of Fibonacci anyon quasiparticles, and arises because two

Fibonacci quasiparticles may fuse either into the identity

or into a single Fibonacci quasiparticle [47]. This exotic
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property makes Fibonacci quasiparticles capable of universal

quantum computation [17].
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FIG. 4: (a-b) The low-lying orbital ES of Ψ1 and |Ψφ〉 by setting

Ly = 24lB . |Ψ1(φ)〉 denotes the GS with identity 11 (Fibonacci

φ) anyonic quasiparticle. (c) Energy difference and (d) entropy dif-

ference between |Ψ1〉 and |Ψφ〉, obtained from infinite DMRG on

cylinder geometry with varying Ly . The error bars are determined

based on results from ten different infinite DMRG calculations for

each sector[71].

Topological Degeneracy on the infinite cylinder.—

Topologically-ordered states have characteristic GS degen-

eracies on compactified spaces. To access the different

topological sectors at ν = 13/5, we implemented the infinite-

size DMRG in cylinder geometry with a finite circumference

Ly [44, 69, 71]. For each value of Ly, we repeatedly

calculated GSs using different random initializations for the

infinite DMRG optimization. We found that each infinite

DMRG simulation converged to one of the two states: |Ψ1〉
and |Ψφ〉. These states are distinguishable by their orbital

ES as shown in Fig. 4: |Ψ1〉 has the same ES structure

as in Fig. 3(a-c), which matches the identity sector with

root configuration “. . . 0111001110 . . .”. On the other hand,

|Ψφ〉 shows the ES multiplicity pattern 1, 3, 6, 13, ..., which

identifies the spectrum as that of the Fibonacci non-Abelian

sector with root configuration “. . . 1010110101 . . .” [71, 78].

Furthermore, these two groundstates are indeed energetically

degenerate, with an energy-difference per electron of less than

0.0002with Ly = 24lB, while the entropy difference between

these two states is around ∆S ≈ lnφ ≈ 0.48, consistent

with the quantum dimension of the Fibonacci quasiparticle.

Combining this with the fivefold center-of-mass degeneracy,

we have obtained all the 10 predicted degenerate RR3 GSs on

infinite cylinder (or torus).

Summary and discussion.— We have presented what we

believe to be compelling evidence that the essence of the

Coulomb-interaction ground states at ν = 13/5 and 12/5 is

indeed captured by the parafermion k = 3 Read-Rezayi state

RR3, in which quasiparticles obey non-Abelian “Fibonacci-

anyon” statistics. The neutral excitation gap is found to be a

finite value ∆n ≈ 0.012e2/lB in the thermodynamic limit.

Results for the entanglement spectrum “fingerprint” and the

value of the topological entanglement entropy show that the

edge structure and bulk quasiparticle statistics are consistent

with the prediction bases on the RR3 state. Additionally, we

find two topologically-degenerate groundstate sectors on the

infinite cylinder, respectively corresponding to the identity

and the Fibonacci anyonic quasiparticle, which fully confirms

the RR3 state, without input of any features (such as shift)

taken from the model wavefunction, that might have biased

the calculation. The current work opens up a number of direc-

tions deserving further exploration. For example, while the

FQH ν = 12/5 state has been observed in experiment, there

is no evidence of a FQH phase at ν = 13/5 in the same sys-

tems [5, 8]. So far it is not clear whether this absence is due to

a broken particle-hole symmetry from Landau level mixing,

or other asymmetry effects such as differences in the quantum

wells [7]. Our numerical studies suggest that the outlook for

the existence of such a state at 13/5 is promising, and some

positive signs of this may have already been observed very re-

cently [70]. Numerical studies may also further suggest how

various other exotic FQH states in the second Landau level at

different filling-factors may be stabilized.

Note added.— After the completion of this work, we be-

came aware of overlapping results in Refs. [79].
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