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Abstract

To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy

is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement.

Two dimensional string theory is among the very simplest instances of an emergent spatial dimension. We

compute the entanglement entropy in the large N matrix quantum mechanics dual to two dimensional

string theory, in the semiclassical limit of weak string coupling. We isolate a logarithmically large,

but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the

emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative

‘graininess’ of space.
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INTRODUCTION

Locality is a key ingredient of conventional quantum field theories. To show that a given

theory of quantum gravity exhibits an emergent semiclassical spacetime, an essential aspect to be

understood is the emergence of local dynamics in the emergent spacetime. A robust and universal

probe of locality is entanglement entropy. In a quantum system with degrees of freedom at all

scales, such as a quantum field theory, local interactions imply a large amount of short distance

entanglement in the ground state [1, 2]. This suggests the following strategy: Suppose we are given

a quantum state that is a candidate to describe an emergent spacetime (say, the ground state of

N = 4 SYM theory [3] or the ground state of BFSS matrix quantum mechanics [4]). To ‘find’ the

locality of the emergent spacetime within this state, that is, to identify the degrees of freedom that

interact locally in the emergent spacetime, what we must do is identify strongly entangled degrees

of freedom in the state.

In this paper we will implement the above strategy in the simplest possible example of emergent

spacetime. This is the emergence of spacetime in two dimensional string theory from the matrix

quantum mechanics of a single large N matrix. While relatively simple, this duality can be thought

of as the baby cousin of the AdS/CFT correspondence. We will see that it illustrates how quantum

gravity can provide nonperturbative cutoffs on UV divergences that appear due to short distance

entanglement in quantum field theory.

The low energy (compared to the string scale) effective target space action for two dimensional

bosonic string theory takes the form [5, 6]

S =

∫
dt dx

√−ge−2Φ
(
R + 4 (∇Φ)2 + 16− (∇T )2 + 4T 2 − 2Ṽ (T )

)
. (1)

The fields are the metric g, ‘tachyon’ T and dilaton Φ. This theory has only one propagating

degree of freedom, which we can consider to be the tachyon. The background of interest is the

linear dilaton solution together with a tachyon condensate

gµν = ηµν , Φ = 2x+ · · · , T = µ

(
x+

logµ

2

)
e2x + · · · . (2)

The dots indicate that the solution can only be trusted in the regime of weak string coupling

gs ≡ eΦ ≈ e2x , (3)

which becomes small as x → −∞. The relative coefficients of the two terms in the tachyon

profile are fixed by nonlinearities in the tachyon action [6]. The single free parameter µ in the
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background determines the string coupling at the ‘tachyon wall’ (x ≈ −1
2
log µ) to be geff. ≈ µ−1.

Therefore, µ → ∞ is a weakly coupled limit in which scattering off the tachyon wall can be

described perturbatively.

Our objective in this paper is the following. We will evaluate the entanglement entropy of a

spatial interval of length ∆x = x2 − x1 that is to the left of the tachyon wall (2x . − log µ) and

in the weakly interacting limit µ → ∞. In this regime the spacetime is semiclassical and so the

entanglement entropy of a spatial region makes sense. About the background (2) the tachyon is a

massless field. The nonlinearities of the tachyon action can still be important close to the tachyon

wall, however, and couple linearized fluctuations of the tachyon to the non-translation-invariant

tachyon background (2). These effects become small in the limit x → −∞. In this limit, with

weak string interactions and weak nonlinearities, we expect to find the entanglement entropy of a

two dimensional massless scalar [7]

S =
1

3
log

∆x

ǫ
, (x→ −∞, ∆x fixed) . (4)

Here ǫ is a UV cutoff. The semiclassical spacetime computation of this quantity is simply divergent

and cannot see the cutoff. We will instead obtain the result (4), complete with an explicit cutoff,

from the full underlying quantum state out of which the spacetime emerges.

Our result is given in equation (21) below. To compare with (4) we can again take the limit

x → −∞. The result simplifies to

S =
1

3
log

µ∆x√
gs(x1) gs(x2)

, (x→ −∞, ∆x fixed) . (5)

A similar result (with x1 ≈ x2) has been given some time ago in the prescient papers [8, 9]. Our

result (21) is more precise and we believe our treatment is more transparent, although the essential

physics is the same as that discussed in [8, 9]. The finite answer for the entanglement indicates

a fundamental nonperturbative ‘graininess’ of spacetime at the scale set by the string coupling

gs = eΦ ≪ 1. It is natural to think of this scale as the de Broglie wavelength of the D-particles

in the theory, whose condensation has created the spacetime [10, 11]. Also, because the dominant

short distance entanglement comes from the boundaries of the region [x1, x2], it is natural that the

cutoffs in (5) are set by the string coupling evaluated at the endpoints x1 and x2.

The worldsheet string theory describing the background (2) is Liouville theory coupled to c = 1

matter. By discretizing the worldsheet, this theory is equivalent to a certain matrix quantum

mechanics tuned to a critical point in a double scaling limit, as reviewed in [11–14]. The matrix
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quantum mechanics has the action

S = βN

∫
dt tr

[
1

2
Ṁ2 + V (M)

]
. (6)

Here M is an N × N Hermitian matrix and β is a coupling. We can restrict to singlet states, for

instance by gauging the time derivative. The singlet states can be described by the eigenvalues of

the matrix M . These eigenvalues experience the usual Vandermonde repulsion. For the quantum

mechanics (6) of a single matrix, the Vandermonde repulsion is equivalent to Pauli exclusion of

fermions. The dynamics of the eigenvalues can therefore be formulated as the dynamics of N

non-interacting spinless fermions moving in the potential V . The emergent spacetime in which

the string theory (1) lives is in fact the Fermi surface of this theory, and the tachyon field is the

bosonization of the fermion dynamics, describing density fluctuations of the Fermi surface.

In order to obtain a continuum limit of the string theory worldsheet, the Fermi energy must be

tuned to be close to a local maximum of the potential V , where there is a logarithmic divergence

in the density of states. In this limit one obtains the following second-quantized Hamiltonian

describing fermions in an inverted harmonic oscillator potential, see e.g. [14]:

H =

∫
dλ

[
1

2

dΨ†

dλ

dΨ

dλ
− λ2

2
Ψ†Ψ+ µΨ†Ψ

]
. (7)

The ground state of (7) is a Fermi sea in the inverted oscillator potential. The Fermi sea is

populated up to a distance µ from the top of the potential. We will work with the original (and

ultimately unstable) version of the theory in which the Fermi sea is only populated on one side of

the local maximum. The results can surely be adapted to the stable theory in which both sides

are populated [15, 16].

Extensive work on this duality [11–14] has mapped various quantities between the fermion

description (7) and the spacetime description (1). The only result we will take from this past

work is that the quantity µ appearing in (7) and in the background (2) is the same. In particular,

this means that in order to access the weakly interacting semiclassical spacetime regime we must

take µ → ∞. As we will see shortly, this corresponds to taking a WKB limit of the fermionic

wavefunctions.

A further connection we will see with past work is that, in the weakly coupled regime as µ → ∞,

and modulo the qualification below, the fermionic coordinate λ in (7) is related to the spacetime

coordinate x in (1) by the ‘time of flight’ relation [17]

x = τ(λ) ≡ − 1√
2

∫ λ

λ⋆(µ)

dλ′√
−V (λ′)− µ

= − log
λ+

√
λ2 − 2µ√
2µ

. (8)
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In the second relation we have used V (λ) = −λ2/2 and hence the turning point λ⋆(µ) =
√
2µ.

In fact, one can also take our results to be an alternative derivation of the relation (8), based on

the need to recover the short distance entanglement (4) of a one dimensional massless scalar field

from the entanglement of the matrix eigenvalues. Note that in (8) we are sending positive λ, to

the right of the maximum of the potential, to negative spacetime coordinate x.

It is known that the relation (8) is not precise [18]. The nonlocal nature of the full map between

x and λ is due to the existence of additional massive string states at certain discrete momenta

[18]. We use the local map (8) to reproduce the contribution of the spacetime tachyon field to the

entanglement entropy of a spatial region in the weakly coupled limit µ → ∞. This map correctly

describes the tachyon’s massless dispersion [17]. The additional string states are both massive and

non-dispersing [18]. Therefore, they do not give a singular contribution to the spatial entanglement

entropy in the ground state.

Given the rather explicit map from the eigenvalue (= fermion) description to the emergent

spacetime in this particular duality, there is a natural guess of which matrix quantum mechanics

degrees of freedom will correspond to a given spatial region in spacetime. Namely, one expects

that the eigenvalues taking some continuous range of values will map onto a region of spacetime

according to the relation (8). With this in mind, we will proceed to compute the entanglement

entropy of an interval in the theory of non-interacting fermions in an inverted harmonic oscillator

potential (7). This is the entanglement in a state in a first quantized theory. While the total

particle number is fixed, the number of particles in a given spatial region fluctuates. The reduced

density matrix is therefore supported on states with varying particle number [19–23]. As discussed

above, we expect this to give a complete and manifestly UV finite computation of the entanglement

entropy that is not accessible directly from the spacetime perspective of the action (1).

ENTANGLEMENT AND DENSITY FLUCTUATIONS

The entanglement entropy of non-interacting fermions in a region A can be expressed as a sum

over cumulants of the particle number distribution [19, 20]

SA =
π2

3
V

(2)
A +

π4

45
V

(4)
A +

2π6

945
V

(6)
A + · · · . (9)

Here

V
(m)
A =

(
−i d
dλ

)m

log
〈
eiλNA

〉∣∣∣∣
λ=0

, (10)

with the integrated density operator in the region A given by NA =
∫
A
dλ n(λ) . The expression for

the entanglement entropy in terms of density fluctuations is ultimately derived from the explicitly
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known reduced density matrix of a region for a system of non-interacting fermions. In particular,

the reduced density matrix and entanglement entropy of a region can be expressed both in terms

of the matrix of fermion two point correlation functions [21] and also in terms of the matrix of

fermion wavefunction overlaps in the region [22]. We also found the further discussion in [23]

helpful.

The expansion of the entanglement entropy in terms of the density cumulants in (9) will be

especially useful for us for the following reason. It has been found that the leading singular behavior

of the entanglement entropy in the limit of large fermion occupation number is determined by the

second cumulant alone [24, 25]. We will see shortly below that the large µ limit of interest to us is

a WKB limit for the fermions and hence indeed corresponds to large fermion occupation number.

Therefore, we can expect that to leading order in the large µ limit

SA =
π2

3
V

(2)
A =

π2

3

∫

A

dλ dλ′
(
〈n(λ)n(λ′)〉 − 〈n(λ)〉 〈n(λ′)〉

)
. (11)

Actually, this result – that one can restrict to V
(2)
A to leading order – has not been shown for

noninteracting electrons in an arbitrary potential. In the additional limit in which the size of the

entangling region becomes small relative to the scale of variation in the potential (this is the limit

considered in [8, 9]), then the cancellations described in [24] for the short distance engagement

will occur independently of the form of potential. We will see below that we can do better than

this, by noting that in the WKB limit the singular contributions to all of the cumulants V
(m)
A are

functions of the time of flight variable (8).

The density operator is given by the second quantized fermionic field operators Ψ as n(t, λ) =

Ψ†(t, λ)Ψ(t, λ) . The field operators can be expressed in terms of creation and annihilation operators

weighted by energy eigenfunctions of the associated single particle Hamiltonian:

Ψ(t, λ) =

∫ ∞

−∞
dν eiνta(ν)ψν(λ) . (12)

That is

− 1

2

d2ψν

dλ2
+ V (λ)ψν = −νψν . (13)

Note that ν is minus the energy. Similarly µ will be the chemical potential measured downwards

towards negative energies, so that the state satisfies aν |µ〉 = 0 if ν < µ, and a†ν |µ〉 = 0 if ν > µ.

There is no sum over parities of the wavefunction in (12) because we are interested in a background

in which the Fermi sea is filled only on one side of the local maximum. The density correlation in
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(11) is at equal times. Standard manipulations then give [26]

〈n(λ)n(λ′)〉 − 〈n(λ)〉 〈n(λ′)〉 =
∫ ∞

µ

dν1 ψν1(λ)ψν1(λ
′)

∫ µ

−∞
dν2 ψν2(λ)ψν2(λ

′) . (14)

We have used the fact that the wavefunctions will be real.

COMPUTATION OF THE PARTICLE VARIATION

To evaluate the entanglement entropy, following equations (11) and (14) above, we need to

compute the integrals

3SA = π2

∫ ∞

µ

dν1

∫ µ

−∞
dν2

(∫ λ2

λ1

dλψν1(λ)ψν2(λ)

)2

. (15)

We have taken the region A to be the interval [λ1, λ2]. The λ integral is immediately performed

by noting that ∫ λ2

λ1

dλψν1(λ)ψν2(λ) =
1

2

1

ν1 − ν2

[
dψν1

dλ
ψν2 − ψν1

dψν2

dλ

]λ2

λ1

. (16)

This result follows directly from the Schrödinger equation (13). In particular, (16) is exact and

does not depend on any WKB limit. It also does not depend on the form of the Schrödinger

potential.

We specialize now to the potential of interest V (λ) = −λ2/2. The occupied states have ν > µ in

the Schrödinger equation (13). Therefore ν is large in the large µ limit, and the wavefunctions are

correctly captured by a WKB limit. Performing the standard matching across the turning points,

the WKB wavefunctions for λ >
√
2ν are, up to corrections that are exponentially small at large

µ,

ψν(λ) =

√
2√
πp

sin

(∫ λ

√
2ν

p dλ− π

4

)
, (17)

where p =
√
λ2 − 2ν , so that

Pν(λ) ≡
∫ λ

√
2ν

p dλ =
1

2

(
λ
√
λ2 − 2ν − 2ν log

λ+
√
λ2 − 2ν√
2ν

)
. (18)

Our wavefunctions have an extra
√
2 in their normalization relative to [26], as we are restricting

to modes that are zero on one side of the local maximum.

Substituting the WKB wavefunctions (17) into (16), and squaring as required by (15), gives an

integrand that can be written as exponentials of linear combinations of Pν1(λ1), Pν2(λ1), Pν1(λ2), Pν2(λ2).
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Many of these terms are oscillatory. Upon integration, the oscillating terms experience significant

cancellations. There are no stationery phase points in the region of integration and hence the

oscillating terms vanish in the WKB limit µ → ∞. In order for the oscillations to be tamed, the

exponents must cancel. This can happen in two ways. Firstly the exponent can cancel exactly,

to leave a non-oscillating term. Secondly, the exponent can take forms such as Pν1(λ1)− Pν2(λ1).

These terms oscillate, but for ν1 ∼ ν2 the two terms almost cancel and the oscillations are slowed

down.

The contribution to the integral (15) from the oscillating terms in the ν1 ∼ ν2 region and of

the non-oscillating terms everywhere are computed in the Supplementary Material. The dominant

contribution to the ν1 ∼ ν2 region is found to come from states that are close to the Fermi surface.

The answer is

Iosc. = γE + log ǫ+ log
τ(λ2)− τ(λ1)

τ(λ2) + τ(λ1)
+

1

2
log

(
16τ(λ1)τ(λ2)

)
. (19)

Here τ(λ) is just the ‘time of flight’, as defined in equation (8) above. Also, ǫ is a cutoff on the

difference (ν1− ν2)/2. The divergence as ǫ→ 0 will be cancelled by the non-oscillatory part of the

integral. Indeed, in the Supplementary Material we show that the non-oscillating contribution to

the integral (15) is

Inon-osc. =
1

2
log

[(
λ21 − 2µ

) (
λ22 − 2µ

)]
− log ǫ . (20)

The result (19) for the modes close to the Fermi surface in fact holds for electrons in any

potential V (λ). The result is always (19) in terms of the time of flight variable τ(λ) for the

potential. Furthermore, by adapting the computation in the Supplementary Material, it is easily

seen that the contribution of these modes close to the Fermi surface to the higher cumulants V (m)

in (9) is also a function of the time of flight variable τ(λ).

Putting the above results together (i.e. 3SA = Iosc. + Inon-osc.), and using the inverse relation

to (8) for the time of flight variable, i.e. λ =
√
2µ cosh τ(λ) , we finally obtain the entanglement

entropy as a function of τ(λ1) = x2 and τ(λ2) = x1 (we flipped the numbering 1 ↔ 2 to preserve

the ordering under the change of sign as λ↔ x in (8)). The answer can be written as

SA =
1

3
log

x2 − x1√
g̃s(x1) g̃s(x2)

+
1

6
log

16 x1x2
(x1 + x2)2

+
γE
3

+ · · · . (21)

In this expression we introduced the ‘string coupling’ [27]

1

g̃s(x)
≡ 2µ sinh2 τ(λ) . (22)
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Under the identification (8), in which τ(λ) = x, and in the limit in which the expression (3) for

the coupling can be trusted, x→ −∞, then indeed we have

g̃s(x) =
gs(x)

2µ
, (x→ −∞) . (23)

The dots in (21) denote the contribution from the higher cumulants in (9), that we discuss

shortly. Equation (21) is our final expression for the entanglement entropy of the region [x1, x2] in

the target space theory. It is manifestly finite. We noted in (4) and (5) that the result reproduces

the expected entanglement due to the tachyon field in the emergent spacetime, in the regime in

which the comparison can be made reliably.

We have already mentioned that in some potentials the leading logarithmically singular term

in the entanglement entropy at large particle number is known to be entirely captured by the

second cumulant V
(2)
A [24, 25]. For a region [λ1, λ2] that is very small compared to the scale of

variation of the potential, this result should hold for fermions in any potential. This singular term

goes like log(λ2 − λ1) and arises due to modes close to the Fermi surface. We noted that the

contribution of these modes to all the V
(m)
A cumulants are functions of the time of flight variables

τ(λ). Taken together, these observations suggest that the whole log[τ(λ2)− τ(λ1)] term found in

(21) has been reliably captured by V
(2)
A alone. We have checked this by verifying the absence of a

log[τ(λ2)− τ(λ1)] term in the first higher cumulant correction, V
(4)
A . Therefore, we expect that the

first term in the final result (21) correctly captures the leading non-analyticity in the entanglement

entropy as x1 → x2 at any x. In contrast, numerical investigation of the V
(4)
A correction shows

that the remaining terms in (21) do receive corrections from higher cumulants.

The cutoff in the short distance target space entanglement, as evidenced in the comparison

of (4) and (5), arises technically from the fact that the inverse string coupling (22) is essentially

the depth of the Fermi sea at the point λ. This finite depth provides a cutoff on the number of

modes that are entangled, as was emphasized in [8, 9]. Therefore, the cutoff in the first term in

(21) should also be robust, to leading order in the WKB limit, against corrections from the higher

cumulants [24, 25]. We have explicitly checked that there is no logarithmically large contribution

to the non-oscillating part of V
(4)
A .

DISCUSSION

We have shown that the emergent semiclassical locality of the tachyon field in two dimen-

sional string theory can be seen as an accumulation of entanglement in the dual matrix quantum

mechanics. The short distance entanglement of the tachyon field was identified in the entangle-

ment between eigenvalues that were valued in some range with the remaining eigenvalues. We
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found that this accumulation of entanglement is cut off, from the spacetime point of view, by a

nonperturbative ‘graininess’ at a scale set by the (spatially varying) string coupling constant.

The emergent locality that we have diagnosed through entanglement goes all the way to the

spacetime UV cutoff scale. Recent works in the AdS/CFT correspondence have noted that an

emergent coarse-grained locality, at the larger AdS scale, can be represented by the entanglement

structure of a tensor network [28–31]. This ‘skeleton’ of the emergent spacetime needs to be fleshed

out with a large N number of degrees of freedom, that can then provide locality of the sort we have

described: down to a microscopic scale. The single matrix quantum mechanics we have studied is,

however, not powerful enough to produce spacetime physics with a hierarchy of scales.

In physically richer theories of quantum gravity, the entanglement of fields in the emergent

spacetime (such as the tachyon mode whose entanglement we identified) will come hand in hand

with the entanglement of microscopic ‘stringy’ degrees of freedom that act as the ‘architecture

of spacetime’ [32–35]. Understanding emergent locality in fully fledged quantum gravity theories,

using the perspective advocated here, will likely be closely tied to a deeper understanding of the

Bekenstein-Hawking entropy of black holes [36, 37] as well as the Ryu-Takayanagi formula [38].

The singlet sector matrix quantum mechanics we have studied is not expected to capture black

hole thermodynamics nor, likely, Ryu-Takayanagi type spacetime entanglement. See, for instance,

the discussion in [39] and references therein.
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