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Simulating a binary black hole (BBH) coalescence by solving Einstein’s equations is computation-
ally expensive, requiring days to months of supercomputing time. Using reduced order modeling
techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a sec-
ond, for numerical relativity (NR) waveforms from non-spinning BBH coalescences with mass ratios
in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model’s un-
certainty and show that our modeling strategy predicts NR waveforms not used for the surrogate’s
training with errors nearly as small as the numerical error of the NR code. Our model includes all
spherical-harmonic −2Y`m waveform modes resolved by the NR code up to ` = 8. We compare our
surrogate model to Effective One Body waveforms from 50-300M� for advanced LIGO detectors and
find that the surrogate is always more faithful (by at least an order of magnitude in most cases).

Since the breakthroughs of 2005 [1–3], tremendous
progress in numerical relativity (NR) has led to hun-
dreds of simulations of binary black hole (BBH) coa-
lescences [4–10]. This progress has been driven partly
by data analysis needs of advanced ground-based grav-
itational wave detectors like LIGO [11] and Virgo [12].
Recent upgrades to these detectors are expected to yield
the first direct detections of gravitational waves (GWs)
from compact binary coalescences [13].

Despite the remarkable progress of the NR commu-
nity, a single high-quality simulation typically requires
days to months of supercomputing time. This high com-
putational cost makes it difficult to directly use NR
waveforms for data analysis, except for injection stud-
ies [4, 9], since detecting GWs and inferring their source
parameters may require thousands to millions of accu-
rate gravitational waveforms. Nevertheless, a first tem-
plate bank for nonspinning binaries in Advanced LIGO
has been recently constructed from NR waveforms [14].
Furthermore, NR waveforms have been used successfully
in calibrating inspiral-merger-ringdown (IMR) effective-
one-body (EOB) [15–21] and phenomenological [22–25]
models. These models have free parameters that can be
set by matching to NR waveforms and are suitable for
certain GW data analysis studies [26]. However, these
models can have systematic errors since they assume a
priori physical waveform structure and are calibrated and
tested against a small set of NR simulations.

In this Letter, we present an ab initio methodology
based on surrogate [27, 28] and reduced order modeling
techniques [29–33] that is capable of accurately predict-
ing the gravitational waveform outputs from NR with-
out any phenomenological assumptions or approxima-
tions to general relativity. From a small set of specially
selected non-spinning BBH simulations performed with
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FIG. 1. Top: The + polarization (2, 2) mode prediction
for q = 2, the surrogate model’s worst prediction over q from
a “leave-one-out” surrogate that was not trained with this
waveform (see below). Our full surrogate, trained on the en-
tire data set, is more accurate. Bottom: Phase δϕ2,2 and
waveform differences between the surrogate and highest res-
olution (Lev4) SpEC waveforms. Also shown is the SpEC
numerical truncation error found by comparing the two high-
est resolution (Lev4 and Lev3) waveforms.

the Spectral Einstein Code (SpEC) [34–36], we build a
surrogate model that can be used in place of performing
SpEC simulations. The techniques are general, however,
and directly apply to other NR codes or even analyti-
cal waveform models. The surrogate model constructed
here generates non-spinning BBH waveforms with mass
ratios q ∈ [1, 10], contains 25–31 gravitational wave cy-
cles before peak amplitude, and includes many spherical-
harmonic modes (see Table II and its caption). These
choices are made based on available NR waveforms and
are not limitations of the method. Our surrogate model
has errors close to the estimated numerical error of the
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input waveforms. An example comparing the surrogate
output to an NR waveform can be seen in Fig. 1. This
simulation took 9.3 days using 48 cores but only ∼ 0.01
sec for the surrogate evaluation of the (2,2) mode.

Previous work [27, 37] built surrogates for EOB wave-
forms; building and assessing surrogate models of NR
waveforms have unique challenges associated with input
waveforms that are expensive to compute. We summa-
rize next the construction of our model, focusing on steps
not addressed in [27] but are required for NR surrogates.

Parametric sampling– Typically, a surrogate model is
trained on a dense set of waveforms known as the train-
ing set. In the case of NR, we cannot afford to gen-
erate a large number of waveforms. Instead, we gener-
ate a dense set of non-spinning waveforms using an EOB
model [18], as implemented in [38], which contains the
(`,m) = {(2, 2), (2, 1), (3, 3), (4, 4), (5, 5)} spin-weight −2
spherical-harmonic modes and captures robust features
of NR waveforms. The EOB training set waveforms are
computed for times in [−2750, 100]M (M is the total
mass), which is the interval over which we build our sur-
rogates.

Next, on this training set we apply a greedy algorithm
to expose the most relevant mass ratio values [39, 40].
The algorithm proceeds from a linear basis constructed
from i waveforms already chosen. The L2 norms of the
differences between the training set waveforms and their
projection onto this basis are computed. The waveform
with the largest such error is added to the basis as its
i + 1 element. SpEC simulations of non-spinning BBH
mergers are then performed for these mass ratios. The
resulting NR waveforms are used to build our surrogates
without any further input from the EOB model.

We seeded the greedy algorithm with 5 publicly avail-
able SpEC simulations of non-spinning BBH mergers
[10, 19] (see Table I), and the next 17 (ordered) mass ra-
tio values are the algorithm’s output based on the EOB
model. The final ∼10 mass ratios are included to improve
the surrogate if necessary, since we can assess the surro-
gate model’s accuracy only after it is built. Our method
for building surrogates is hierarchical [27, 40]; additional
NR waveforms can be included to improve the model’s
accuracy.

Generating the NR waveforms– Table I summarizes
the 22 SpEC simulations used in this paper. See, e.g.,
Ref. [35] for the numerical techniques used in SpEC. The
numerical resolution is denoted by “Levi”, where i is
an integer that controls the local truncation error in the
metric and its derivatives allowed by adaptive mesh re-
finement (AMR) in SpEC; larger numbers correspond to
smaller errors (the error threshold scales like e−i) and
more computationally-expensive simulations. The scal-
ing of global quantities (e.g. waveform errors) with i is
difficult to estimate a priori. Two to five levels of res-
olution are simulated for each mass ratio. To achieve
quasi-circular orbits, initial data are subject to an itera-

# ID q e−5 T/M Orbs # ID q e−5 T/M Orbs

1 180 1.00 5.1 9867 28.2 12 191 2.51 65 6645 22.5

2 181 6.00 5.8 7056 26.5 13 192 6.58 4.0 5149 21.1

3 182 4.00 12 3840 15.6 14 193 3.50 3.0 5242 19.6

4 183 3.00 4.8 4008 15.6 15 194 1.52 74 5774 19.6

5 184 2.00 15 4201 15.6 16 195 7.76 22 5226 21.9

6 185 9.99 31 5817 24.9 17 196 9.66 23 5330 23.1

7 186 8.27 16 5687 23.7 18 197 5.52 25 5061 20.3

8 187 5.04 3.0 4807 19.2 19 198 1.20 17 6315 20.7

9 188 7.19 15 5439 22.3 20 199 8.73 8.5 5302 22.6

10 189 9.17 13 6019 25.2 21 200 3.27 36 5507 20.2

11 190 4.50 2.5 5199 20.1 22 201 2.32 15 5719 20.0

TABLE I. Properties of the highest resolution SpEC simula-
tions used for building BBH waveform surrogates. The quan-
tity e−5 is the orbital eccentricity divided by 105 [43]. The
duration T/M and number of orbits (Orbs) are also given.
The SpEC simulations are available in the public waveform
catalog [10] under the name “SXS:BBH:ID.”
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FIG. 2. The relative error, |h22
i − h22

i+1|/|h22
i+1|, of successive

resolutions SpEC Levi for the (2,2) mode of simulation 19 in
Table I. Top: Waveform output as directly given by SpEC
(“Unaligned”). Bottom: “Aligned,” which involves a multi-
mode peak alignment scheme described by Eq. (2) followed
by a rotation of the binary around the z-axis to align the
waveform phases at ti = −2750M . Our surrogate is built from
NR waveform data after alignment, and so this measurement
of truncation error is the most relevant for surrogate model
building.

tive eccentricity reduction procedure resulting in eccen-
tricities . 7× 10−4 [41–43].

SpEC numerically solves an initial boundary value
problem defined on a finite computational domain. To
obtain waveforms at future null infinity I +, we use
the Cauchy characteristic extraction (CCE) method [44–
48]. Using the PittNull code [44–46], we compute the
Newman-Penrose scalar Ψ4 at I + and finally obtain the
gravitational wave strain h through two temporal inte-
grations. We minimize the low-frequency, noise-induced
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“drifts” [47] by using frequency cut-offs.1

Figure 2 shows the convergence typically observed in
our simulations when using AMR. Because AMR makes
independent decisions for different Levi, a particular sub-
domain may sometimes have the same number of grid
points for two different values of Levi at a given time, and
the subdomain boundaries do not necessarily coincide for
different Levi. Thus, plots like Figure 2 sometimes show
anomalously small differences between particular pairs
of numerical resolutions (for instance Lev2 vs. Lev3 near
t = −3500M in the top panel of Figure 2). See Sec. IIIB
of [35]. Nevertheless, the waveform differences generally
decrease quickly with increasing resolution. Let

δh`,m(q) ≡ ‖h
`,m
1 (·; q)− h`,m2 (·; q)‖2∑

`,m ‖h
`,m
2 (·; q)‖2

(1)

be the disagreement between two waveform modes h`,m1

and h`,m2 where ‖h`,m(·; q)‖2 =
∫
dt |h`,m(t; q)|2. We esti-

mate the numerical truncation error of each mode when
h1 and h2 are waveforms computed at the two highest
resolutions. The full waveform2 error for a given mass
ratio is δh(q) =

∑
`,m δh

`,m(q). We report numerical
truncation errors after an overall simulation-dependent
time shift and rotation (which we shall refer to as surro-
gate alignment, described in the next section), which are
physically unimportant coordinate changes. The result-
ing estimated numerical truncation errors of the domi-
nant (2, 2) modes, using our surrogate alignment scheme,
are shown in Fig. 3 (black circles).

Additional error sources are non-zero eccentricity in
the (intended to be circular) NR initial data, and

an imperfect procedure for integrating Ψ`,m
4 to obtain

h`,m ≡ A`,m exp(−iϕ`,m). These both cause small oscil-
lations in the waveform amplitudes A`,m(t) and phases
ϕ`,m(t) [47, 50] that we model following [50]. We also
compute the error in the strain integration scheme by
comparing Ψ`,m

4 to two time derivatives of h`,m, as well as
estimates for numerical errors in the CCE method [48].
For the (2, 2) mode, these additional errors are negligibly
small compared to SpEC truncation errors (cf. Fig. 3).

Preparing NR waveforms for surrogate modeling– We
apply a simulation-dependent time shift and physical ro-
tation about the z-axis so that all the modes’ phases are
aligned. This reveals the underlying parametric smooth-
ness in q that will be useful for building a surrogate. Our

1 We integrate Ψ4 twice in the (dimensionless) frequency domain

by dividing −Ψ`,m
4 (f) by [2πmax(f, 2f0/3)]2, where f0 is the

initial GW mode frequency.
2 Throughout, we exclude m = 0 modes because (non-oscillatory)

Christodoulou memory is not accumulated sufficiently in current
NR simulations [49].
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FIG. 3. Numerical truncation errors (black) dominate all
other sources of error for the (2,2) mode, except for simula-
tion 1 (q = 1), where the truncation errors are already very
small. For some weaker modes, systematic amplitude oscilla-
tions primarily due to eccentricity may become more relevant.

time shifts set each waveform’s total amplitude

A(t; q)2 ≡
∫
S2

dΩ |h(t, θ, φ; q)|2 =
∑
`,m

|h`,m(t; q)|2 , (2)

to be maximum at t = 0. After enforcing this alignment
scheme we interpolate the waveform mode amplitudes
and phases onto an array of uniformly spaced times in
[−2750, 100]M , with ∆t = 0.1M . Finally, we align the
initial gravitational wave mode phases by performing a
simulation-dependent, constant (in time) physical rota-
tion about the z-axis so that ϕ2,2(ti) = ϕ2,−2(ti), which
fixes a physical rotation up to multiples of π. We resolve
the ambiguity by requiring ϕ2,1(ti) ∈ (−π, 0]. Waveform
truncation errors, after performing this surrogate align-
ment scheme, are shown in Fig. 2. In what follows, we
call “truncation error after surrogate alignment” simply
“truncation error.”
Building the surrogate– Each m > 0 mode, h`,m(t; q),

is modeled separately while (due to reflection symmetry
about the orbital plane) m < 0 modes are evaluated us-
ing h`,−m(t; q) = (−1)`h`,m(t; q)∗. We model all m 6= 0
modes but keep only those yielding smaller surrogate er-
rors δh`,m compared to setting the mode to zero. Table II
lists our modeled modes and their errors.

Our complete surrogate waveform model is defined by
hS(t, θ, φ; q) =

∑
`,m h

`,m
S (t; q)−2Y`m (θ, φ) where

h`,mS (t; q) = A`,mS (t; q)e−iϕ
`,m
S (t;q) ,

X`,m
S (t; q) =

NX∑
i=1

B`,mX,i (t)X
`,m
i (q) , X = {A,ϕ}.

(3)

Unlike Ref. [27], we construct a reduced basis representa-
tion for the waveform amplitudes and phases separately,
instead of the waveforms themselves [37]. Here, the
{B`mX,i}

NX
i=1 are computed off-line from the SpEC wave-

forms [27]. At a set of NX specially selected times
{T `mX,i}

NX
i=1, which are the empirical interpolant nodes

[27, 51], the functions X`m
i (q) ≈ X`m(T `mX,i; q) approx-

imate the parametric variation of the amplitudes and
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phases (via fitting). A thorough discussion of surrogate
model building steps is presented in [27]. When evaluat-
ing the surrogate at a particular mass ratio, the fits are
evaluated first to determine the amplitudes and phases
at their respective interpolating times {T `mX,i}

NX
i=1. The re-

maining operations yield the surrogate model prediction,
hS(t, θ, φ; q).

To find each X`m
i (q) we perform least-squares fits to

the 22 data points, {X`m(T `mX,i; qj)}22j=1. All fits except
odd m mode amplitudes use 5th degree polynomials in
the symmetric mass ratio, ν = q/(1 + q)2. For odd m
modes, the amplitude approaches 0 and its derivative
with respect to ν diverges as q → 1 (or ν → 1/4). Con-

sequently, we use A`mi (ν) =
∑5
n=1/2,1 a

`m
n (1 − 4ν)n to

account for this behavior. The waveform phases of odd
m modes at q = 1, which are undefined, are excluded
when fitting for each ϕ`mi (q).
Assessing surrogate errors– We next assess the surro-

gate’s predictive quality. To quantify the error in the
surrogate model itself, as opposed to its usage in a data
analysis study, we do not minimize the errors over rela-
tive time and phase shifts here.

A first test is a consistency check to reproduce the
22 input SpEC waveforms used to build the surrogate.
These errors are shown in Fig. 4 (red squares) and are
comparable to or smaller than the largest SpEC trunca-
tion errors (black circles).

A more stringent test is the leave-one-out cross-
validation (LOOCV) study [52]. For each simulated mass
ratio qi, we build a temporary trial surrogate using the
other 21 waveforms, evaluate the trial surrogate at qi,
and compare the prediction with the SpEC waveform for
qi. Hence, the trial surrogate’s error at qi should serve
as an upper bound for the full surrogate trained on all
22 waveforms. Repeating this process for all possible
20 LOOCV tests3 results in Fig. 4 (blue triangles). De-
spite the ith trial surrogate having no information about
the waveform at qi, the errors remain comparable to the
largest SpEC truncation errors. The LOOCV errors are
typically twice as large as the full surrogate ones confirm-
ing the former as bounds for the latter. Relative errors
for selected modes are shown in Table II. While weaker
modes have larger relative errors, their power contribu-
tion is small enough that the error in the full surrogate
waveform, δh, is nearly identical to the SpEC resolution
error.

A third test is to compare the surrogate waveforms to
those of a second surrogate, built from the second highest
resolution SpEC waveforms. The resulting comparison is
shown in Fig. 4 (cyan line). These errors are compara-
ble to SpEC waveform truncation errors (black circles).

3 We omit the smallest and largest mass ratios here as the corre-
sponding trial surrogates would extrapolate to their values.

(`,m)
Surrogate NR

(`,m)
Surrogate NR

Max Mean Max Mean Max Mean Max Mean

(2, 2) 0.36 0.07 0.36 0.08 (3, 2) 100 17 1.7 0.43

(2, 1) 29 3.4 4.1 0.54 (4, 4) 7.4 2.2 20 2.1

(3, 3) 53 4.1 11 0.94 All 0.42 0.12 0.40 0.10

TABLE II. Relative mode errors, reported as 103 ×
‖h`,m

S (q)− h`,m(q)‖2/‖h`,m(q)‖2, from the leave-one-out sur-
rogates. Only those modes which contribute greater than
0.02% to the full waveform’s time-domain power are used
in the computation of the max and mean, except for ‘All’
which is just δh. Our surrogate also includes the (3, 1),
(4, [2, 3]), (5, [3, 4, 5]), (6, [4, 5, 6]), (7, [5, 6, 7]), and (8, [7, 8])
modes. Weaker modes typically have relative errors between
1% and 35%.

1 2 3 4 5 6 7 8 9 10
q
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Surrogate
LOOCV

Surrogate truncation
SpEC truncation

FIG. 4. Waveform differences between the two highest SpEC
resolutions (black circles), surrogates built from the two high-
est SpEC resolutions (cyan line), the full surrogate and SpEC
(red squares), and leave-one-out trial surrogates and SpEC
(blue triangles). The largest surrogate error is for q = 2, for
which the (2, 2) mode is shown in Fig. 1.

We find that the surrogate building process is robust to
resolution differences. Furthermore, the surrogate can be
improved using NR waveforms of higher accuracy.

We perform a final test and construct surrogates using
the first N selected mass ratios (from Table I) as input
waveforms, leaving 22−N mass ratios with which to test.
We find the total surrogate error decreases exponentially
with N and is comparable to the SpEC truncation error
after using 15 waveforms. Some modes (e.g., (2, 2)) are
fully resolved after as few as 7 waveforms.

Comparison to EOB– For data analysis purposes, we
compare our surrogate with EOBNRv2 [19] and SEOB-
NRv2 [21] models (generated from a current implementa-
tion4 in LAL [38]). In Fig. 5, we show the unfaithfulness

1−max
δϕ,δt

Re

∫ ∞
15Hz

df
ˆ̃
h1(f ; θ, ϕ)

ˆ̃
h∗2(f ; θ, ϕ+ δϕ)e2πifδt

Sn(f)
(4)

4 We find that very small changes (∼10−12) in the minimum fre-
quency or the total mass can have unexpectedly large changes in
the unfaithfulness (∼10−4)
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FIG. 5. Unfaithfulness, from Eq. (4), comparing SpEC with
our surrogate, EOBNRv2, and SEOBNRv2 models using all
available m 6= 0 modes. Dashed lines show the unfaithfulness
for (2, 2) modes only. All waveforms are Planck-tapered [54]
for t ∈ [−2750,−2500]M and t ∈ [50, 90]M . For the full
multi-modal waveforms, we maximize the unfaithfulness over
θ and ϕ for the worst-case scenario. We use the “+” polariza-
tion, which is non-zero for all (θ, ϕ). Left: The shaded regions
contain all 22 mass ratios, while the dashed lines maximize
over mass ratio. The vertical grey line is the minimum total
mass (≈115M�) ensuring all (2, 2) modes start with ≤ 15Hz
at the end of the first tapering window. Right: Unfaithful-
ness for a 115M� binary.

of the surrogate and the two EOB models against the

NR waveforms. Here,
ˆ̃
h is the normalized Fourier trans-

form of h (such that a waveform’s unfaithfulness with it-
self gives 0), and Sn(f) the advanced LIGO zero-detuned
high power sensitivity noise curve [53]. The surrogate is
more faithful than both EOB models for all cases con-
sidered. Since SEOBNRv2 only provides (2,±2) modes,
it performs worst for large total masses where additional
modes become important. All models predict the (2, 2)
mode with an unfaithfulness < 1% for q ∈ [1, 10] at
115M�, however the EOB models are limited by the
availability of subdominant modes.

Discussion– We have built a surrogate model for
NR non-spinning BBH merger waveforms generated by
SpEC. On a standard 2015 single core computer, all
77 modes with 2 ≤ ` ≤ 8 are evaluated in ≈ 0.5 sec
(≈ 0.01 sec for a single mode) providing a factor of
∼ 106−8 speedup compared to SpEC. Importantly, this
is achieved with only a small loss in accuracy. Like other
data-driven modeling strategies, our surrogate is valid
only within the training intervals, namely, q ∈ [1, 10] and
t/M ∈ [−2570, 100]. Therefore, within the training inter-
vals, our surrogate model generates BBH merger wave-
forms that are equivalent to SpEC outputs up to numer-
ical error and a small modeling error.

NR surrogates can be used for multiple-query applica-
tions in gravitational wave data analysis such as detector-
specific template-bank (re-)generation and parameter es-
timation. Our surrogate, and more generally the results
of this paper, open up the exciting possibility of perform-

ing, for example, parameter estimation with multi-modal
NR waveforms (with hybridization, if needed). Param-
eter estimation studies seeking to incorporate model er-
ror may benefit from the surrogate’s relatively straight-
forward characterization and assessment of uncertainty
from a combination of the surrogate’s and SpEC’s sys-
tematic and numerical errors. We anticipate NR surro-
gate modeling to complement traditional strategies [15–
24, 26] by providing unlimited high-fidelity approxima-
tions of NR waveforms with which to calibrate, refine and
make comparisons. Building NR surrogates of precessing
BBH merger waveforms, which may be modeled from the
parameters specially selected in [55], offer a promising av-
enue for modeling the full 7 dimensional BBH parameter
space. The surrogate model described in this paper is
available for download at [56, 57].
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[45] M. C. Babiuc, B. Szilágyi, J. Winicour, and Y. Zlo-
chower, Phys. Rev. D 84, 044057 (2011), arXiv:1011.4223
[gr-qc].

[46] J. Winicour, Living Rev. Rel. 12 (2009).
[47] C. Reisswig and D. Pollney, Class. Quant. Grav. 28,

195015 (2011), arXiv:1006.1632 [gr-qc].
[48] N. W. Taylor, M. Boyle, C. Reisswig, M. A. Scheel,

T. Chu, L. E. Kidder, and B. Szilágyi, Phys. Rev. D
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