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Animals of all sizes form groups, as acting together can convey advantages over acting alone;
thus, collective animal behavior has been identified as a promising template for designing engineered
systems. However, models and observations have focused predominantly on characterizing the overall
group morphology, and often focus on highly ordered groups such as bird flocks. We instead study
a disorganized aggregation (an insect mating swarm), and compare its natural fluctuations with the
group-level response to an external stimulus. We quantify the swarm’s frequency-dependent linear
response and its spectrum of intrinsic fluctuations, and show that the ratio of these two quantities
has a simple scaling with frequency. Our results provide a new way of comparing models of collective
behavior with experimental data.

PACS numbers: 87.23.Ge, 05.65.+b, 87.50.Y-, 05.70.Ce

From schools of fish to flocks of birds, collective action
[1, 2] conveys many advantages to social animals [3–6].
The emergence of collective behavior from the underlying
dynamics of individuals is a central question for under-
standing the evolution of sociality in animals [7] and for
controlling engineered distributed systems [8, 9].

The sight of hundreds or thousands of animals mov-
ing in a coordinated way is visually striking [1], and has
inspired many models of collective animal behavior. For
strongly correlated aggregations such as bird flocks, mod-
els often aim to reproduce the observed group-level co-
herent motion and to characterize the conditions under
which ordering will emerge [10]. But some animal groups,
such as insect swarms, can behave collectively without
ever exhibiting large-scale order [11], and for such cases
different descriptions may be needed. Materials, both
ordered and disordered, are typically characterized by
measuring their response to controlled external pertur-
bations. Probing animal groups in this way, however, is
difficult to do. In the field, predator attacks have been
used as natural experiments [12, 13], but neither the en-
vironmental conditions nor the behavior of the predators
can be controlled. Clever laboratory experiments have
used robots to perturb aggregations [14, 15], but as such
visual stimuli may be highly screened in dense groups
[16], it can be difficult to know which animals are aware
of the perturbation directly and which are responding
only to their neighbors. New techniques are therefore
needed to move past purely observational studies of col-
lective animal behavior.

In this Letter, we quantify both the intrinsic fluctua-
tions of laboratory swarms of the non-biting midge Chi-

ronomus riparius and their response to a natural but con-
trolled external signal—the amplitude-modulated hum of
recorded midge wingbeats—that is applied to all of the
individuals in the swarm in the same way. Although

these perturbations weakly affect the behavior of indi-
viduals, we show that they can strongly impact collec-
tive movement. Intriguingly, the swarm response mimics
certain features of materials—the microscopic motion of
strongly fluctuating individuals produces a macroscopic
linear response of the swarm over a range of driving fre-
quencies. Since individual midges inject energy into the
swarm, the fluctuation-dissipation theorem for a passive
material in equilibrium is unsurprisingly violated. How-
ever, by comparing the response of the swarms to driving
and the internal fluctuations of free swarms, we can still
define a state variable, similar to a frequency-dependent
effective temperature, that characterizes their dynami-
cal state. Surprisingly, this state variable has a rela-
tively simple form: a monotonic decay that is consistent
with power-law scaling. Our analysis provides a coarse-
grained description of the microscopic fluctuations and
macroscopic response of a swarm. And by characterizing
more subtle information about the swarm dynamics than
is contained in the overall group morphology, our results
will allow a more detailed comparison between models
and experiments.

Mating swarms of C. riparius are composed exclusively
of males, and can range from a few individuals to many
thousands in the wild. These swarms are epigamic; when
females approach the swarm, they are chased by nearby
males and captured. It is thought that males locate fe-
males within the swarm by listening for their characteris-
tic wingbeat sounds [17]: the sound of female wingbeats
has its fundamental frequency at about 275 Hz, while
the fundamental frequency of male wingbeats is about
575 Hz. Males are thus highly sensitive to acoustic stim-
uli, a feature we can exploit to perturb them with an ex-
ternal, controlled signal—in this case, the recorded hum
of a male midge. Acoustic signals also provide a nearly
uniform stimulus to the swarm as a whole, since the speed
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FIG. 1. (color online) (a) Power spectra of one component of the velocity for an individual midge in a swarm (dashed lines)
and the center of mass of the swarm (solid lines). Data are shown for the undriven case (black) and for swarms excited by the
sound of a male midge sinsuoidally modulated at a frequency of ωd/2π = 1 Hz and a maximum intensity of h0 = 75 dB (red).
(b) Phase-averaged velocities and trajectories of the center of mass (see eq. (1) for the definition of phase averaging) for swarms
driven at ωd/2π = 1 Hz with h0 = 0 (i.e., undriven; blue), 63 dB (green), 68 dB (red), and 75 dB (black). The length of each
arrow shows the instantaneous magnitude of the center-of-mass velocity normalized by the maximum observed value for that
data set (green: 19 mm/s; red: 35 mm/s; black: 44 mm/s). The sound source lies along the y-axis and points in the positive y
direction. (c) Probability density functions (PDFs) of the relative phase of the component of individual midges’ motion at the
driving frequency for the same cases as in (b). The driving signal is defined to have a phase of 0.

of sound is very fast compared to the speed of a midge,
attenuation is weak over the size of a swarm, and the
sound arriving at a single midge is negligibly screened by
other midges since the size of a midge is very small com-
pared to the sound wavelength. We were therefore able
to study laboratory swarms of C. riparius under both
driven and undriven conditions.

We maintain a laboratory colony of C. riparius in a
closed cubic enclosure measuring 91 cm on a side. The
enclosure contains 9 tanks of dechlorinated, oxygenated
water in which larvae develop; adults live in the same en-
closure once they emerge. Details of our husbandry pro-
cedures are given elsewhere [18, 19]. Adult males spon-
taneously form swarms twice a day, with sizes ranging
from a few individuals up to about 100. Using three
hardware-synchronized Point Grey Flea3 cameras, we
captured movies of swarms at a rate of 100 frames per
second, which we then processed to obtain time-resolved
three-dimensional trajectories and kinematics of all the
midges in the swarms using techniques we have described
in detail before [18, 20].

Unperturbed swarms are roughly fixed in place: even
though each individual midge traces out complex flight
paths, their erratic motion averages out and produces no
net drift. This is evident in, for example, the temporal ve-
locity power spectra of the center of mass of the swarm as
compared with single individuals (Fig. 1(a)): the power
in the center-of-mass fluctuations is significantly damped
relative to the case of a single midge, with no significant
spectral peaks. The swarm behavior, however, changes
when it is exposed to external acoustic signals. We ex-
cited the swarm by placing a speaker roughly a meter
from its center (for comparison, typical swarm diame-
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FIG. 2. (color online) (a) Component of the center-of-mass
velocity VCM projected along the direction toward the speaker
for a sound signal with h0 = 75 dB (4 a.u.) and a modulation
frequency of ωd/2π = 0.5 Hz (left axes). The measured sound
intensity is shown as a dashed line (right axes). Once the
sound is initiated, the variation in VCM tracks the modulation
of the acoustic driving. (b) Temporal power spectra of VCM

for a range of driving frequencies. At all frequencies we tested,
the peak response of the swarm was at the driving frequency.
The solid line shows ωd = ω.

ters are about 200 mm) and playing back the recorded
sound of flying midges. When we played the sound of a
female midge, the swarm immediately dissolved as all the
males flew toward the speaker and landed on it. When
we played the sound of a male midge at a constant inten-
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sity, we observed no change in the swarm behavior after
a brief, transient dilation at the initiation of the play-
back. But when we modulated the intensity of the male
sound in time by multiplying it by a sinusoidally varying
signal of angular frequency ωd, we observed a clear and
repeatable response. The trajectories and power spectra
(Fig. 1(a)) of individuals did not significantly change;
however, when we averaged over all the individuals, we
observed a net response that was manifest as a strong
peak in the power spectrum of the swarm’s center of
mass at the modulation frequency of the external sound
(Fig. 1(a)). In space, the center of mass traced out ellip-
tical, oscillatory trajectories with the long axis oriented
toward the speaker, moving away from the speaker as
the volume increased and toward it as the volume de-
creased (Fig. 1(b)). Moreover, as the overall sound in-
tensity increased, both the displacement and the speed of
the center of mass also increased. This behavior is quali-
tatively different from the nearly random (although with
slightly larger fluctuations in the vertical, gravity direc-
tion) dynamics of the center of mass in undriven swarms
(Fig. 1(b)).

What is the origin of this group-level response? Fig-
ure 1(a) shows that power spectra of individual midges
does not significantly change under external driving; ad-
ditionally, the nature and frequency of pairwise interac-
tions, computed via a time-frequency analysis of relative
positions [21], were also unchanged. However, the signa-
ture of the driving is quite evident when averaging over
the entire swarm. These observations suggest that the
swarm-level response may be due to a new coherence in
the phases induced by the driving signal. To assess this
hypothesis, we measured the probability density func-
tions (PDFs) of the relative phase of the Fourier mode of
individual midges at the driving frequency, as extracted
from the cross wavelet transform of the midge motion
with an appropriate sine wave [22]. As shown in Fig.
1c, this PDF changes from a uniform distribution (that
is, phases that are incoherent over the population) with
no driving to a distribution that is strongly peaked, al-
beit with a phase lag from the driving signal. Thus, the
smooth orbits of the center of mass we observe under
driving are likely due to a driving-induced ordering of
the phases of each individual midge.

To examine the swarm-level response in more detail,
in Fig. 2(a) we plot an example time series of the center-
of-mass velocity VCM projected in the direction of the
external speaker for a driving signal modulated at a fre-
quency of ωd/2π = 0.5 Hz. In this example, the peak
intensity of the driving signal was h0 = 75 dB, and
the sound intensity varied from 0.2h0 to h0; for com-
parison, the background sound level at the swarm loca-
tion was measured to be roughly 48 dB. Although we
measured sound intensities in dB, we set them using
linear arbitrary units (a.u.). The scales are related by
h0 (dB) = 62.83(h0 (a.u.))

0.13, so that 75 dB corresponds

to about 4 a.u.
For the first 5 s of data shown in Fig. 2(a), when the

external sound was played at a constant intensity, VCM

fluctuated with little temporal structure. But once we
began to modulate the sound signal, VCM exhibited clear
oscillations at the same frequency as the driving. Power
spectra of VCM (Fig. 2b) show that the dominant re-
sponse of the swarm is indeed at ωd for all frequencies we
tested (up to ωd/2π = 32 Hz). We find that the response
is insensitive to the number of midges participating in
the swarm, consistent with our previous results [23].
Since the response of the swarm to the driving is

approximately periodic with angular frequency ωd, we
define the amplitude U of the response as the peak
magnitude of the phase-averaged center-of-mass velocity
V̄CM (t), assuming a period of 2π/ωd. More precisely, we
define

V̄CM (t) =
1

NT

NT−1
∑

n=0

VCM

(

t+
2πn

ωd

)

, (1)

assuming that we measure for NT total periods and
where 0 ≤ t ≤ 2π/ωd; the response amplitude is then
U = 1

2

(

maxt V̄CM (t)−mint V̄CM (t)
)

. In general, U is a
function of both the frequency ωd and the intensity h0 of
the driving sound. In Fig. 3a, we show the dependence of
U on h0 for a fixed frequency of ωd/2π = 1 Hz. For large
values of h0, U is only weakly dependent on h0, with no
clear trend. But for smaller values (up to about 4 a.u.),
U varies linearly with h0.
Such linear response is typical of materials driven by

external fields, and can be fully described by a single re-
sponse function, the susceptibility χ [24]. Remarkably,
since we observe linear response for the swarm, its dy-
namics can also be captured in this simple way, even
though the swarm is composed of complex, living ani-
mals. We write the swarm response as

U sinωdt = χ(ωd)h0 sin(ωdt− φ), (2)

where χ(ωd) is the susceptibility in the frequency domain
(which may be a complex number) and φ is a possible
phase shift between the driving and the response. Over
the range of linear response, the magnitude of the sus-
ceptibility |χ(ωd)| = U/h0 is approximately independent
of h0 (Fig. 3(b)). We extract the phase lag φ by locating
the peak of the temporal cross-correlation between the
center-of-mass velocity and the driving sound. As shown
in Fig. 3(c), φ is roughly independent of h0, and is con-
sistent with the PDFs shown in Fig. 1c. We note that
unlike in a previous study [11, 25], χ does not describe
a tendency for the midges to align their flight directions
(and indeed we do not observe any such alignment [18]);
rather, it characterizes their mean-field response to the
acoustic driving signal.
We next study the frequency dependence of the swarm

response by fixing h0 and varying ωd. In Fig. 3(d), we
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FIG. 3. (a-c) The amplitude U (a), magnitude of susceptibility |χ(ωd)| (b), and phase φ (c) of the response as a function of h0

for a fixed driving frequency of ωd/2π = 1 Hz. h0 is shown both in dB (top axes) and in arbitrary linear units (bottom axes).
(d-f) U , |χ(ωd)|, and φ as a function of ωd for a fixed h0 = 4 a.u. (75 dB). Error bars show the standard error computed from
measurements of several swarming events.
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FIG. 4. (color online) (a) The power spectral density ωC̃(ω) of the velocity fluctuations for undriven swarms (left axes). Data
are shown for both the center of mass (circles) and individuals (diamonds). Also shown is χ′′(ω), the imaginary part of the

susceptibility (triangles; right axes). ωC̃(ω) and χ′′(ω) disagree, particularly at low frequencies, violating the fluctuation-

dissipation theorem. (b) The ratio of ωC̃(ω) and χ′′(ω) as a state variable Θ that characterizes the swarm. Θ decays roughly

as ω
−3/2
d .

show the dependence of U on ωd for a fixed h0 = 4 a.u.
(the largest sound intensity in the linear response regime;
results for smaller h0 are similar). U is approximately in-
dependent of ωd for small frequencies, but falls off rapidly
as ωd increases above 1 Hz. In Fig. 3(e,f), we show |χ(ωd)|
and φ as functions of ωd. Although it is insensitive to h0,
the phase φ shows a clear dependence on ωd; the swarm
response lags far behind the driving for high frequencies,
but somewhat leads the driving at low frequencies.

The swarm’s simple response to external driving mim-
ics the response of a passive material in an external field.
How far does this analogy extend? For a passive ma-
terial near thermodynamic equilibrium, the fluctuation-
dissipation theorem states that the relaxation after ex-
ternal forcing is the same as the relaxation of a spon-
taneous, intrinsic fluctuation [26]. In our case, it would
suggest that ωC̃(ω) ∝ χ′′(ω), where C̃(ω) is the Fourier
transform of the velocity autocorrelation function in the
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absence of driving and χ′′(ω) = |χ(ω)| sinφ is the imag-
inary part of the susceptibility. But in active systems,
where the individual components locally inject and dissi-
pate energy [27, 28], the fluctuation-dissipation theorem
is often violated, since active processes can cause intrinsic
fluctuations that are not related to the system relaxation.
Such violations have been observed in living systems such
as the cytoskeleton [29, 30], bundles of hair cells [31], and
bacterial suspensions [32]. One would therefore expect
similar, and likely larger, deviations for insects, as they
are both macroscopic and athermal and display complex
individual and social behavior.
We test the fluctuation-dissipation theorem in

Fig. 4(a), where we plot both ωC̃(ω) and χ′′(ω). We
compute C̃(ω) for both the center of mass of the swarms
and for individual insects (in each case averaging over
100 swarms), and find that the trends are similar, al-
though the amplitude is higher for individuals. ωC̃(ω)
and χ′′(ω), however, are quite different, particularly at
low frequencies. The fluctuation-dissipation theorem is
thus violated, as one would expect: active processes
that may be associated with individual behavior or so-
cial interactions lead to fluctuations that are larger than
what they would be for a purely thermal system. Classi-
cally, the constant of proportionality between ωC̃(ω) and
χ′′(ω) is related to the temperature. Although swarms
are athermal, the ratio of these two quantities can be
used to define a state variable Θ, similar to an effective
temperature, for the swarm [31]. As shown in Fig. 4(b),

Θ falls off with frequency roughly as ω
−3/2
d , though our

dynamic range is too short to measure the decay rate
precisely.
We have demonstrated quantitatively that swarms can

exhibit a mean-field linear response to external stimuli,
and that we can characterize this swarm-level response
with a simple state variable that links the microscopic
fluctuations of the swarm with the macroscopic behavior.
These results suggest that we may be able to characterize
the dynamics of animal groups in terms of macroscopic
state variables and constitutive laws instead of low-level
interactions, just as we can coarse-grain over molecular
interactions in a classical material. And since such state
variables are likely much more sensitive to the dynam-
ical details of the aggregations than simply the overall
pattern [1], this approach is a natural starting point for
more stringent comparisons of models with experiments.
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