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Ingenious suggestions continue to be made for separation of racemic mixtures according to the
inert structural chirality of the constituents. Recently discovered self-motile micro/nano-particles
express dynamical chirality, i.e. that which originates in motion, not structure. Here we predict how
dynamically chiral objects, with overdamped dynamics in a soft periodic two-dimensional potential,
can display not only separation into well-defined dynamical subclasses defined by motility charac-
teristics, but also the ability to be steered to arbitrary locations in the plane by simply changing
the amplitude of the external potential. Orientational and translational diffusion produce new types
of drift absent in the noise-free case. As practical implementation seems feasible with acoustic or
optical fields, these phenomena can be useful for laboratory micro-scale manipulations, possibly
including reconfigurable microfluidic circuits with complex networks of unidirectional channels.

PACS numbers: 47.63.mf,05.40.-a,82.70.Dd

Chirality – the lack of mirror symmetry – is of funda-
mental and practical importance across physics, biotech-
nology, medicine, and nanotechnology. For example, ob-
jects with differing structural chirality can exhibit rad-
ically differing biological activity. Hence, several tech-
niques have been developed to efficiently sort chiral
molecules [1] and micro/nano-particles [2–7] using exter-
nal fields to drive the particles through potential land-
scapes where the field-plus-landscape breaks chiral sym-
metry. Certain self-motile biological or artificial objects
express a dynamic chirality by swimming in circles [8–
19], while not necessarily having a chiral shape. Here
we demonstrate that a rich suite of behaviors, going well
beyond simple separation, can be elicited from these “cir-
cle swimmers” or “chiral self-propellers” by adjusting
the strength and period parameters of an appropriately
asymmetric periodic potential in which they move.

A chiral self-propeller in the absence of thermal noise
or external potential simply returns to its original posi-
tion after each circular orbit. Addition of orientational
diffusion produces an effective translational diffusion [20–
26] (with a subtle hidden chirality [26]) without a steady
drift. Pioneering simulation efforts examined the inter-
action of orbiting microswimmers with regular arrays of
hard obstacles, such as L-shaped barriers [27] or pin-
wheels [28]. These investigations reveal very interest-
ing physics: distinct behaviors for right- and left-handed
swimmers and a sensitive, fine-grained dependence on or-
bital radius and barrier shape. For deterministic motion,
the sharp corners and edges of a periodic hard-wall po-
tential tend to yield a very jagged landscape for different
types of swimmer response as a function of orbital ra-
dius or lattice constant; weak stochastic forces wash out
these thinly sliced discrete classes of behavior. The com-
plex interaction of a hard wall with the orientation of a

non-pointlike swimmer adds additional complication.

We show how a wide variety of drift behaviors are pos-
sible for a chiral swimmer in a smooth overdamped pe-
riodic potential. Tuning the strength of the potential
in situ – something straightforward for soft potentials
imposed by acoustic or optical fields – can steer popu-
lations of rotors to arbitrary points in a plane through
a judicious sequence of drifts; it can separate swimmers
based on their linear/angular speed, chirality, or stochas-
tic response; potentially, one could construct boundary-
less fluidic circuits by defining different drift directions
in different regions of space. Furthermore, the dynami-
cal chiralities of rotary swimmers can be interconverted
through flipping (rotation by π) about the motive axis
of the swimmer (as has been observed experimentally
for e.g. bimetallic circle swimmers [25]), thereby pos-
sibly promoting chirality to a switchable state variable.
The generation of linear drift from rotary motion is a
fundamental coupling of great practical and fundamen-
tal importance for powered systems across a broad range
of length scales from aircraft carrier to spermatozoon –
here we present a scheme to achieve this coupling in a
robust manner at the micro and nanoscale, with a drift
direction that does not align to the rotational axis.

To obtain controlled drift in two dimensions, the pe-
riodic potential in which the swimmer moves must not
be invariant under inversion (= rotation by π). Note,
this is not the same as being chiral: a swastika is chi-
ral but inversion-invariant whereas our potential is achi-
ral. Since spatial inversion of a two-dimensional orbit
leaves its chirality unchanged, the only drift velocity al-
lowed in an inversion-symmetric potential is zero. (Inert
structurally chiral particles can be separated in inversion-
symmetric potentials, by applying an additional driving
field which breaks the symmetry [4, 5].) If one wishes
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FIG. 1. (Color online) Drift-phase behavior for the counterclockwise chiral swimmer without (“Deterministic”) and with
(“Stochastic”) orientational and translational diffusion. The deterministic drift-phase diagram has regions of closed orbits
and also drift regions marked by arrows at ±30◦, ±90◦, or 150◦. Dots on the white band at β = 7.0 indicate the points for
which representative trajectory attractors are shown along the top row. With increasing α these attractors evolve to encircle
different maxima or surmount different saddle points, as described in the main text. The stochastic systems with modest
orientational (γo) and/or translational (γt) diffusion show more variable drift speeds vd, as shown in the bottom row of panels
for β = 4, 5, 6, 7, 8 as �, •, �,�, ◦, also color-coded to match the rows of drift-direction symbols below. Each data point is
an average over the drift velocities for 12 initial conditions uniformly distributed in the fundamental unit cell of the periodic
potential. Drift directions are shown by a separate plot with an array of symbols as a function of α and β. Closed ellipses
indicate localization. Straight arrows indicate uniform drift with less than one degree variance in direction. Squiggly arrows
indicate drift with significant wandering [directional variance about O(10◦)]. The symbol indicates diffusive behavior. The
plot at center right shows a typical rapid coalescence of trajectories starting from different locations, here within two orbital
periods at (α, β) = (1.5, 7.0).

to prevent multiple drift directions for a single chiral-
ity, the potential should also lack all rotation symmetry.
But a mirror symmetry, say reflection across the x-axis,
helps ensure separation of the chiralities. Since the re-
flection reverses the handedness of the swimmer even as
it preserves the potential, the drift velocities of clock-
wise and counterclockwise rotators will have opposite y
components, but equal x components. Thus, swimmers
of different chiralities part ways, yet their drifts are not
completely dissimilar. Even if, in the very long run, a
swimmer switches chirality from time to time due to ran-
dom perturbations flipping it over, there will still be a
long-term net drift in the x direction as long as either
drift has a nonzero x component. Surprisingly, an even
less-symmetric potential provides no such guarantee of
separation by chirality. Time reversal of the swimmer’s
mesoscale rigid-body dynamics in a reflection-symmetric
potential reverses both components of the microscopic
velocity, but only one component of the drift velocity at
long length and time scales — an interesting discrepancy

between short and long time-scale symmetries under time
reversal.

In the absence of a potential, a chiral swimmer trans-
lates with velocity v0 = v0v̂ and rotates with angular
velocity sωω, where ω > 0 and sω = ±1 for clockwise
(−) or counterclockwise (+) rotation. v̂ is the swim-
mer’s intrinsic orientation. Under overdamped dynam-
ics, a static external potential V (r) supplies an additive
contribution −µ∇V (r) to the velocity, where µ is the
Stokes mobility of the swimmer, so that the velocity is
generally no longer along the intrinsic orientation. The
potential is taken as a superposition of standing waves
µV (r) = C

∑3
i=1 ci cos(Kk̂i · r + δi), with

∑3
i=1 c

2
i = 1.

K is the the inverse spatial scale (“finesse”), and C the
strength, of the potential. More convenient are dimen-
sionless versions, comparing the potential-induced ve-
locity scale to the free-swimmer speed, and the free-
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swimmer orbit radius to the potential period:

α =
CK

v0
, β =

Kv0
ω

. (1)

The shape and symmetry of the potential are determined
by the unit vectors k̂i, the ratios of the ci’s, and the phase
offsets δi. Using units of ω−1 for time and v0/ω (free
swimmer orbit radius) for length, the equations of mo-
tion, including orientational and translational diffusion,
are

dr

dt
= v̂(θ) +ξ(t) +α

3∑
i=1

cik̂i sin(βk̂ · r+δi)

dθ

dt
= sω + ζ(t). (2)

Here, ζ and ξi are independent zero-mean white noises in
translation and orientation, with dimensionless strengths
γo = Do/ω and γt = Dtω/v

2
0 , Do and Dt being con-

ventional diffusion coefficients. For typical microfluidic
swimmers γo ∼ 10−2 and γt ∼ 10−3 to 10−2 [8]. Taking

k̂1 = (1, 0), k̂2 = (−1/2,
√

3/2), k̂3 = k̂2−k̂1; δ1 = δ2 = 0,
δ3 = 1.3; and c1 = 0.256, c2 = c3 = 0.683 gives a po-
tential with minima and maxima lying on interpenetrat-
ing triangular lattices, with a mirror line parallel to x̂,
but none parallel to ŷ (thus satisfying the requirements
discussed earlier). Grayscale plots appear in Fig. 1.
The unequal amplitudes and phase offset break inversion
and rotation symmetries while maintaining the mirror-
line along x̂. Local minima of the potential are inter-
connected by the four saddle points channeling transi-
tions between local minima. We present explicit results
for clockwise rotation, sω = −1. As discussed above, dy-
namics for the other chirality are obtained by reflection
about the x-axis.

We begin with the fully deterministic system, later
adding orientational and translational diffusion. The
fully deterministic case (γt =γo =0) is accessible to large
(> 100µm) swimmers whose potential-free trajectories
are almost perfect circles [29]. We mapped out the swim-
mer behavior with a resolution of ∆α = 0.01, ∆β = 0.5
to obtain the “drift-phase diagram” shown at the center
of Fig. 1. At each (α, β) value, trajectories were calcu-
lated starting from 12 initial conditions distributed uni-
formly over a fundamental unit cell of the potential. We
used an Euler algorithm with 360β and 3600β time steps
per rotational period to make sure the discretization does
not affect the trajectories in the drift regimes of deter-
ministic dynamics. For each initial condition and time
step, we simulated for 100 periods, which was verified to
be more than sufficient for convergence to an attractor.
We observed collapse onto a unique trajectory attrac-
tor independent of initial condition, generally within a
few periods for nearly all (α, β) values (see middle right
of Fig. 1). Exceptions were observed for 6 ≤ β ≤ 7

and α ≈ 0.6, and also in the complicated region around
1.0 ≤ α ≤ 1.2, β ≈ 4. However, these effects are washed
out by introducing stochastic noise.

The chiral swimmer executes closed orbits – no net
drift – at both weak and strong potential amplitude
α. Potentials of intermediate strength host a variety of
steady drift behaviors over well-defined regions of the α-
β plane, usually at a speed vβ of one lattice constant per
rotation period, vβ = 2v0/(

√
3β). Except for a narrow

sliver at large β and small α, the drift velocity has a
non-negative x-component. Within the white, unshaded
portion of the drift-phase diagram, the trajectories are
more complex and repeat only after many orbital peri-
ods. This finely tuned high-period behavior is washed
out by weak stochastic noise, as discussed later.

The “tongue” around β ≈ 7 and α ≈ 0.6 defines an in-
teresting re-entrant behavior as a function of α for fixed
β. This reentrance is associated with transitions in the
number of maxima enclosed by the rotor trajectory, as
illustrated by the trajectory attractors on the top row of
Fig. 1. At the smallest values of α (i.e. weak potential),
the orbit encloses three maxima and is only weakly per-
turbed from circularity. A transition from three to two
enclosed maxima, which occurs around α = 0.51, sets
the stage for the emergence of drift behavior at slightly
larger values of α. In this regime, multiple distinct pairs
or trios of maxima compete for the prize of enclosure, and
drift occurs when the system “side-steps” through lattice
vectors of the potential as it transitions between topolog-
ically distinct choices of enclosed maxima, as shown in
Fig. 1 for α = 0.59 and 0.70. A narrow fjord with high-
period closed orbits separates these drift regions, with
structure that also indicates competition between max-
ima. The local phase space expansion rate is proportional
to −∇2V , so a slight shift in the attractor near a poten-
tial maximum entails relatively large changes elsewhere,
thus helping explain the sensitive dependence of the tra-
jectory on the particular maxima enclosed. At α = 0.70,
the drift involves transitions between a pair of maxima
and just a single maximum; this presages the end of the
re-entrant “tongue” and the emergence of a broad, sta-
ble region of closed orbits where only a single maximum
is enclosed, as exemplified by α = 0.73 and 1.06. Drift
then reasserts itself around α ≈ 1.2, where the potential
first becomes strong enough that the rotor cannot sur-
mount a saddle point; the resulting drift orbits at higher
α enclose zero maxima and are characterized by which
saddle points are surmounted. The re-entrant tongues
terminate at smaller values of β where the potential pe-
riod is too large for the attractor to ever surround three
maxima.

Rather than simply obliterating the finer features of
the deterministic drift-phase diagram, modest amounts
of stochastic noise in the form of orientational or trans-
lational diffusion actually expand the domain of drift
behavior and greatly accentuate the degree of leftward
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drift, as shown by array of drift directions in the bottom
row of panels in Fig. 1 for (γo, γt) = (0, 0.001), (0.01, 0),
and (0.01, 0.001). Each data point averages over 12 ini-
tial condition for 2000 periods of deterministic rotation.
Since the drift speed (and sometimes direction) in the
stochastic case changes continuously with α and β, the
results are plotted differently from the deterministic case:
with a dense grid of arrows showing drift directions, plus
the drift speed in a second panel. The thin sliver of left-
ward drift in the deterministic diagram opens up into a
broad region of generally leftward motion. The large re-
gion of −30◦ drift in the deterministic diagram is robust
against modest stochastic orientational or translational
noise, preserving its direction with only a small reduc-
tion in speed as occasional saddle-point transitions are
missed due to noise. This down-right drift domain actu-
ally expands to cover larger values of α where the deter-
ministic orbits are closed: in this extended domain, occa-
sional stochastic kicks facilitate saddle-point transitions
in a process akin to stochastic resonance. A well-defined
plateau with a steady near-ideal (vd ≈ vβ) drift speed
to the lower right exists across a wide range of α and
β, indicating that broad populations of swimmers can
be directed on nearly uniform chirality-dependent tra-
jectories. For the weakest potentials the closed orbits of
the deterministic case open up into diffusive trajectories
marked by the symbol . Perfect localization cannot
persist indefinitely in the presence of even the slightest
amount of noise. The real meaning of the closed orbit
symbols in Fig. 1 is observed localization over at least
2000 periods.

At a fixed finesse β, it is possible to steer swimmers of
a given chirality to an arbitrary location using only vari-
ations in the strength of the potential. The requirement
is three drift vectors such that all of their mutual nearest-
neighbor angles are less than 180◦. Three rather than two
such basis vectors are needed, since only positive coeffi-
cients are allowed in their superposition. Such triples can
be identified for some values of β on the drift diagrams
of Fig. 1. For example, for a swimmer of characteris-
tics (γo, γt) = (0.01, 0) operating in a β = 7.0 potential,
any desired displacement can be obtained by dwelling for
controlled periods of time at α = 0.9, 1.3 and 1.7. This
effect is obtainable across a range of values of diffusivi-
ties γo and γt, most commonly at the larger values of β.
Note also that iterations of the procedure could be used
to compensate for random motions.

Keeping in mind that the amplitude and scale param-
eters α and β are made dimensionless through incorpora-
tion of v0 and ω, these drift-phase diagrams also provide
a means to distinguish swimmers based on their linear
or angular speeds. Numerous schemes can be designed
to affect this outcome. For example, filtering-out of ev-
erything but horizontal right movers will select for just
those swimmers whose specific values of v0 and ω place
them in the restricted region of pure right-ward drift for a

given inverse lattice constant K and potential amplitude
C. The video in Supplementary Information provides
one example of differential drift for motors with differ-
ent linear/angular velocities in the same potential. More
generally, the potential strength can be slowly varied in
space to create boundaryless fluidic circuits where dif-
ferent drift velocities are designed to occur in different
regions of the plane.

With increasing strength of the stochastic terms, the
drift-phase diagram smooths out and the down-right mo-
tion begins to dominate, as shown in Supplementary In-
formation. Since this dominant drift direction retains a
large vertical component, robust chiral separation is still
possible if one accepts (or exploits) variations in drift
speed, but more complex steering or fluidic circuits are
less practical in this limit. Even at high stochasticity,
there remains an interesting region of incipient drift on
the low-α side of the main drift peak, marked by the sym-
bol , where the motion looks something like a biased
Brownian diffuser.

With a range of propulsive mechanisms and motor ge-
ometries now in hand for autonomous movers, their sep-
aration and guidance at the micro/nano-scale becomes
a natural next goal. A soft periodic potential designed
to express prescribed spatial symmetries provides an in-
triguing framework in which to control the long-time,
long-distance behavior of rotary swimmers, particularly
since both optical and acoustic fields are available to pro-
vide the requisite spatially and temporally tunable poten-
tials. Chiral swimmers separated by handedness, speed
and orbital frequency should then become available for
further tasks, whether of a practical or fundamental na-
ture. Interactions between the swimmers provide further
prospects for interesting behavior. Weak short-range in-
teractions within dilute swimmer populations may act
something like a stochastic term; at higher motor concen-
trations a reasonably long-ranged attractive interaction
could possibly lead to locking of drift speeds for nearby
motors. Stronger interactions could conceivably generate
complex collective drift behaviors.
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