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Several emergent phenomena and phases in solids arise from configurations of the electronic
Berry phase in momentum space that are similar to gauge field configurations in real space such as
magnetic monopoles. We show that the momentum-space analogue of the “axion electrodynamics”
term E · B plays a fundamental role in a unified theory of Berry-phase contributions to optical
gyrotropy in time-reversal invariant materials and the chiral magnetic effect. The Berry-phase
mechanism predicts that the rotatory power along the optic axes of a crystal must sum to zero, a
constraint beyond that stipulated by point group symmetry, but observed to high accuracy in classic
experimental observations on α-quartz. Furthermore, the Berry mechanism provides a microscopic
basis for the surface conductance at the interface between gyrotropic and nongyrotropic media.
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The topological consequences of time-reversal symme-
try breaking in two-dimensional electronic systems have
been a focus of interest since the discovery of the quan-
tum Hall effects [1]. Similarly interesting phenomena
arise from breaking inversion symmetry (IS) in three-
dimensional systems, for example in one type of ”Weyl
semimetal,” [2, 3], possibly realized in TaAs [4–7], where
IS breaking allows for non-trivial topological states that
contain pairs of chiral gapless fermions. At least in insu-
lators, it is now widely known that there exist quantized
transport phenomena as a result of topological invari-
ance. One goal of this paper is to demonstrate an exam-
ple of topology in the optical response of metals, which
can be derived using relatively simple semiclassical elec-
tron motion in low-symmetry solids.

The main effect to be discussed, natural optical ac-
tivity, arises in materials that break IS but retain time-
reversal symmetry. We find two unexpected features of
optical activity, one of which may already have been ob-
served in α-quartz, and obtain a general constraint on
optical activity in some frequency ranges that impacts
some designs for topological photonic devices. Electron
dynamics in such materials is subtle because, despite the
lowering of spatial symmetry, the energy spectrum it-
self remains symmetric, i.e., ε(k) = ε(−k). Thus, the
physics that underlies transport anomalies in such sys-
tems must involve the properties of the electronic wave-
functions themselves, rather than their energy levels.

It is by now generally understood that the
wavefunction-dependent transport properties of electrons
on a lattice are affected by the Berry curvature, Ω(k), of
the Bloch states [8–11]. In the presence of a nonzero
Ω(k), the semiclassical equations of motion for an elec-
tron wavepacket are modified to respect the duality be-

tween position and momentum space,

ṙ(k) = v(k) + k̇×Ω(k)

−(~/e)k̇(r) = E(r) + ṙ×B(r), (1)

where v(k) = ~−1∇kε(k), Ω = ∇× 〈uk| − i∇k|uk〉, and
electron charge is (−e). From the symmetry of the mod-
ified equations of motion with position and momenta, it
is clear that Ω(k) can be viewed as an effective magnetic
field in momentum space. In this paper we introduce an-
other useful momentum-position space correspondence,
involving the dual to the magnetoelectric coupling term
in the Lagrangian density, that is, Lij(r, t) = αijEiBj .

The dual nature of the semiclassical equations suggests
a corresponding tensor in momentum space,

Gij(k) = vi(k)Ωj(k), (2)

which turns out to play a fundamental role in a uni-
fied theory of Berry-phase contributions to the transport
and optical properties of inversion-breaking media. The
scalar diagonal part of αij is topological and referred to
as “axion electrodynamics” [12–14], and the trace of Gij
also has a topological significance in multiple contexts.

As is clear from Eq. 1 the signature of nonzero Ω(k)
is the existence of an ”anomalous” current transverse to
the applied force. For ac electric fields the transverse cur-
rent manifests as the phenomenon of optical gyrotropy,
in which a medium exhibits a different index of refrac-
tion for left and right circularly polarized light [15]. Gy-
rotropy in media with broken time-reversal symmetry
is known as Faraday rotation, whereas in time-reversal
symmetric systems it is usually referred to as ”natural
optical activity” (NOA). Below, we develop a semiclassi-
cal theory of NOA originating from the Berry curvature
of inversion-breaking media, obtaining two new results.
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First, the gyrotropic tensor, gij , that emerges from the
topology of the Berry curvature is traceless. This rep-
resents a constraint on the components of gij beyond
well-known relations imposed by the point-group sym-
metry and is therefore a signature of the Berry phase
mechanism. Tracelessness of the topological gij poten-
tially resolves an 80 year old mystery concerning NOA in
α-quartz and other materials [16, 17]. The second result
is the existence of a surface current that flows in response
to an electromagnetic wave incident at the interface be-
tween gyrotropically active and inactive media. The am-
plitude of this surface current is precisely that required
to ensure that the rotation of the polarization of light
reflected from this interface is zero, as is required by On-
sager reciprocity in time-reversal invariant systems. Our
result obtained from the Berry phase mechanism is the
first example in which the surface current required by
time-reversal symmetry emerges from a microscopically
derived constitutive relation.

FIG. 1. Momentum space representation of the Berry cur-
vature mechanism for nonvanishing transverse current in a
metal with inversion-symmetry breaking. The ellipsoid de-
picts a typical Fermi surface with slices oriented perpendicu-
lar to the optical wavevector. The Berry curvature, electron
velocity and acceleration to first order in optical wavevector
are illustrated for two points related by time-reversal.

Tracelessness. As a preliminary step, we rederive the
Berry-phase contribution to the gyrotropy tensor in a
homogeneous time-reversal-symmetric material [18]. We
use a ”Berry/Boltzmann” approach, in which the stan-
dard calculation of linear response via the Boltzmann
equation is augmented by the anomalous velocity term
in Eq. 1. Solving the Boltzmann equation in the re-
laxation time approximation yields f (1), the change in
the distribution function to first order in the wave field
E(r, t) = E exp(iωt− iq · r),

f (1) = −∇kf (0) · δk, (3)

where [19]

δk =
eE

~(1/τ − iω + iq · v)
. (4)

For simplicity, we concentrate in the following on the
clean or high-frequency limit ωτ → ∞. The semiclas-
sical equations are valid as long as the frequency is be-
low that of interband transitions and neglect electron-
electron interactions (although incorporating electrons at
the density-functional level is simple just as for the in-
trinsic anomalous Hall effect). The current that arises
from the anomalous velocity is given by[20],

j = −e
∫

d3k

(2π)3
f (0)δk̇×Ω, (5)

where to first order in q,

δk̇ ≈ −eE
~

(
1 +

q · v
ω

)
. (6)

Substituting Eq. 6 into Eq. 5 we obtain

j =
e2

~
E×

∫
d3k

(2π)3
f (0)

(
1 +

q · v
ω

)
Ω. (7)

The q-independent component of the integral in Eq.
7 vanishes because time-reversal symmetry enforces
Ω(k) = −Ω(−k). However, as Fig. 1 illustrates, the
q-dependent term can be nonzero in the presence of IS
breaking. An explicit example of a tight-binding Hamil-
tonian with Berry curvatures of the required type was
previously given [18]. The ellipsoid represents a typi-
cal Fermi surface and the two parallel discs are slices of
momentum space perpendicular to the wavevector of the
light. Focusing on two representative points related by
time-reversal, we see that the acceleration k̇ to first or-
der in q (shown as red arrow) is proportional to v and
is therefore odd in k. Consequently the second term in
the integrand of Eq. 7 is overall even and leads to a
nonvanishing transverse current.

Next, we re-express Eq. 7 in the standard form for the
nonlocal constitutive relation,

ji(ω) = σij(ω)Ej + γijl(ω)
dEj
dxl

, (8)

which relates the current to the first order of spatial
derivative of the electric field [15]. Using Eq. 7,

γijk =
−e2

i~ω

∫
d3k

(2π)3
f (0)εijlΩlvk, (9)

where εijl is the antisymmetric tensor. This response
derived from the Berry curvature satisfies the condition
γijl = −γjil imposed by time-reversal symmetry [15, 21].

Because γijk is antisymmetric, the gyrotropic response
is usually expressed by its dual second-rank tensor gij ,
i.e., ji = −iεijkgklEjql. Converting to this notation,

gij = − e2

i~ω

∫
d3k

(2π)3
f (0)vjΩi. (10)
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The trace of gij is given by,

∑
i

gii = − e2

i~ω

∫
d3k

(2π)3
f (0)v ·Ω, (11)

which is zero for the ground state [11] or any other dis-
tribution f (0) depending only on energy. To see that
integral over occupied states of Ω · v vanishes even in
the presence of monopole singularities in the Berry cur-
vature, we write, ~v(k) = n̂dε/dk⊥, where n̂ is normal to
the surface of constant energy in momentum space and
dk⊥ is the separation between two such surfaces whose
energy differs by dε. With this relation, the integral over
occupied states can be written [22],∫

d3k

(2π)3
f (0)v ·Ω =

∫ µ

εmin

dε

∫
ε

dSΩ · n̂. (12)

The integral is clearly zero in the absence of singularities
in Ω, as in this case ∇ · Ω = 0 for all k. However,
the integral still is equal to zero [22] in the presence of
singularities such as Weyl points, since∫

d3k

(2π)3
f (0)v ·Ω = (µ− εmin)

∑
n

qn, (13)

which vanishes as the net monopole charge in the Bril-
louin zone is zero because of lattice fermion doubling [23].

Tracelessness of gij has verifiable observable conse-
quences: it is equivalent to the statement that the sum
of the optical rotatory power measured along three prin-
cipal axes is zero. This rule, derived on the basis of
Berry-Boltzmann physics, goes beyond the constraints
imposed by point group symmetry. There are fifteen
crystal classes in which non-vanishing components of gij
are allowed. Of these, eleven are chiral, indicating that
all mirror symmetries are broken, and four have broken
inversion symmetry but are not chiral. Point group sym-
metry requires only these latter four classes to have trace-
less gyrotropic tensors. Thus it would seem that for the
other classes the observation of tracelessness would indi-
cate the dominance of the Berry phase mechanism.

There are hints that the Berry phase mechanism is
applicable to insulators as well as metals in the optical
properties of α-quartz, one of the earliest and most stud-
ied of condensed matter chiral systems [16, 17, 24]. Point
group symmetry applied to α-quartz, which belongs to
crystal class 32, requires only that (in the principal axis
frame) two of the three diagonal elements of gij are equal,
and the off-diagonal components are zero. Nevertheless,
it is found experimentally that g11 = g22 = −(1/2)g33,
that is, the tensor is traceless over a broad frequency
range that extends from visible to near-UV wavelengths.
As it is extremely unlikely that this is accidental, there
is evidence that at least in certain non-metallic systems
a Berry phase-related mechanism is responsible for the

gyrotropic response. A hint is found in detailed ab ini-
tio calculations of α-quartz and trigonal Se [24], which
identify a contribution that is traceless within numeri-
cal error (the cv part in that work’s notation). For a
given material, measuring the trace of the gyrotropy ten-
sor tests whether the Berry mechanism dominates other
possible contributions to the gyrotropic response, for ex-
ample from the “Zeeman” interaction [25].

The gyrotropic response that results from the Berry
curvature is related to the question of the existence of a
“chiral magnetic effect”, a current induced by a magnetic
field in the presence of pairs of Weyl nodes (related to a
triangle anomaly [23, 26–30]). According to the semiclas-
sical theory [22], the equilibrium current is

j =
e2

~
B

∫
f (0)d3k

(2π)3
Ω · v, (14)

and is therefore zero according to the argument presented
above. However, the constitutive relation we have de-
rived for the nonlocal current gives a closely related ex-
pression for the current that accompanies a plane elec-
tromagnetic wave. Consider a plane wave propagating
along a principal axis of the crystal, which we take to be
the z-direction. According to Eq. 10,

jx =
−e2

~
Bx

∫
f (0)d3k

(2π)3
Ωzvz, (15)

where we have used the Maxwell relation ∇ × E =
−∂B/∂t. Thus the correct constitutive relation for the
Weyl state is closely related to Eq. 14, but with the
crucial differences that the response must be intrinsically
anisotropic because of tracelessness of Ωivj , and the cur-
rent must vanish if the magnetic field is static.
Interfacial surface current. Combining Eq. 8 with

Maxwell’s equations yields a difference in index of re-
fraction for left and right circular polarizations, δn± ≡
n+−n−. The latter implies a rotation of the plane of lin-
ear polarization with propagation through the medium,
which is the phenomenon of NOA. At first glance, δn± 6=
0 would appear to predict polarization rotation on reflec-
tion as well. The Fresnel formula for normal incidence
reflection, yields a Kerr angle,

ΘK =
δr±
r

=
iδn±
n2 − 1

. (16)

However, the expectation that δr± 6= 0 has been shown
to violate the general reciprocity principle for electromag-
netic fields interacting with time-reversal invariant media
in equilibrium [31]. The seeming paradox is reconciled by
an historically somewhat obscure [32–34] (but recently
rediscovered [35]) constraint on the nonlocal response
functions imposed by time-reversal symmetry in media in
which the gyrotropic coefficient varies in space, for exam-
ple at an interface. While the validity of this constraint
is not in question, there has yet to be a derivation of a
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nonlocal constitutive relation in spatially varying chiral
media that is consistent with time-reversal symmetry.

A strength of the semiclassical approach is that com-
bining real-space and momentum-space dependence is
easier than with diagrammatic methods. We now include
spatial variation of f (0) and show that the tracelessness
of Gij is the crucial ingredient needed to obtain a fully
consistent constitutive relation at the interface.

Imagine that either by spatial variation of chemical
composition, or some form of gating (see Fig. 2), a step
in potential, V (z), is engineered that is sufficiently slow
on the scale of the mean free path such that the semiclas-
sical equations remain valid. We calculate the interfacial
current in response to a plane electromagnetic wave with
wavevector qz, to order ExV

′(z).
Including V (z), the equilibrium distribution function

f (0) becomes a function of z, leading to an extra term in
the Boltzmann solution, f (1) = (∂f (0)/∂z)δz, where,

δz =
e

~
(E×Ω)z

iω
, (17)

is the distance travelled in the z-direction by a carrier in
one cycle of the optical frequency. A detailed derivation
of the component of f (1) to order V ′(z)E is given in the
Supplemental Material. The additional current arising
from the spatial variation of f (0) is,

j =
−e2

i~ω

∫
d3k

(2π)3
∂f (0)

∂z
(E×Ω)zv(k). (18)

When the width of the interface is much less that the
wavelength of the light, the relevant observable is the
surface sheet current,

K =
−e2

i~ω

∫
d3k

(2π)3
∆f (0)(E×Ω)zv(k), (19)

where ∆f (0) is the change in f (0) across the interface.
Eq. (19) corresponds to a constitutive relation for the
interfacial current of the form, Ki = GijEj , where the
surface conductance is given by,

Gij =
e2

i~ω

∫
d3k

(2π)3
∆f (0)εkjzΩk(k)vi(k). (20)

If the region z < 0 is emptied of carriers, such that we
have an interface between gyrotropically active and inac-
tive media, then ∆f (0) = f (0). The antisymmetric part
of the surfuce conductance is

1

2
(Gxy −Gyx) =

e2

i~ω

∫
d3k

(2π)3
f (0)(Ωxvx + Ωyvy), (21)

or 1
2 (Gxy −Gyx) = gzz, by the tracelessness of gij . Fi-

nally, we obtain for the antisymmetric part of the current
response at the optically active/inactive interface,

jx = gzz[∂z +
1

2
δ(0)]Ey. (22)

While the factor of 1/2 appearing in Eq. (22) can be
shown to be required by time-reversal symmetry [21], it
has not previously been derived from a microscopic or
phenomenological theory. For uniaxial materials the con-
stitutive relation Eq. 22 together with standard boundary
conditions on the fields yields zero polarization rotation
on reflection, as required by reciprocity.

FIG. 2. Illustration of a slab of an acentric metal in
which electrons are depleted underneath a gate electrode. In
the presence of an electromagnetic wave, counterpropagating
sheet currents appear at the interfaces betweeen optically ac-
tive and inactive media.

We note that in Eq. (22) time-reversal symmetry is
preserved globally, but not locally. The conductivity ten-
sor that describes the interfacial current violates Onsager
reciprocity, as it is a local relation with antisymmetric
off-diagonal components, i.e., Gxy 6= Gyx. Onsager reci-
procity and time-reversal symmetry are restored only
when considering the combined bulk and surface re-
sponse. This behavior is reminiscent of 3D topological
insulators, whose surface states have an odd number of
Dirac fermions, which is impossible for a 2D time-reversal
symmetric system in isolation. It would be worthwhile to
understand possible additional electronic contributions
to gyrotropy beyond the semiclassical static limit, as has
been done for the chiral magnetic effect [36] in a Weyl
semimetal model, where the “uniform” (not static) ef-
fect is nonzero but not quantized. The Weyl semimetal
TaAs [4–7], along with the similar candidate materials
NbAs [37–39] and TaP [40, 41], breaks inversion but its
space group (l41md, #109) has point group 4mm, which
does not allow optical activity. Either finding a differ-
ent Weyl semimetal with lower symmetry, or lowering
the symmetry of the TaAs family (e.g., by strain), would
lead to a useful testbed for the Berry-phase contribution
to gyrotropy as the magnitude of the Berry curvature is
large near the Weyl points, leaving aside the possibility
of open Fermi surfaces [42].

The results presented here are important for the emerg-
ing field of topological photonics [43]. To date, this re-
search has focused mainly on intricately fabricated meta-
media in which response functions vary periodically on
the scale of the optical wavelength. An example of a
topological photonic state that can be created in this way
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is an analogue of the quantum Hall effect [44], but inter-
faces between conventional materials, which require less
difficult fabrication, can also support topological inter-
face states [45, 46]. However, in Ref. [45] the gyrotropic
response is modeled as either a pseudoscalar, or a traceful
tensor with a single diagonal component, both of which
are excluded by our analysis. Thus, one implication of
our findings is that future analysis of chiral/nonchiral in-
terfaces should include the traceless property of gij . Fi-
nally, an important open question is the relationship be-
tween the interfacial photonic states generated by gij and
the time-reversal protected electron conductance, gzz.
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