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We show that superconducting currents are generated around magnetic impurities and ferro-
magnetic islands proximity-coupled to superconductors with finite spin-orbit coupling. Using the
Ginzburg-Landau theory, T-matrix calculation, as well as self-consistent numerical simulation on a
lattice, we find a strong dependence of the current on the direction and magnitude of the magnetic
moment. We establish that in the case of point magnetic impurities, the current is carried by the
induced Yu-Shiba-Rusinov (YSR) subgap states. In the vicinity of the phase transition, where the
YSR states cross at zero energy, the current increases dramatically. Furthermore, we show that the
currents are orthogonal to the local spin polarization and, thus, can be probed by measuring the
spin-polarized local density of states.
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Superconductor-ferromagnet heterostructures were re-
cently proposed as a viable platform for realizing topo-
logical superconductivity (TS) [1–3], which can host Ma-
jorana fermion quasiparticles at vortex cores and bound-
aries [4–6]. The Majorana fermions obey non-Abelian
statistics and may be utilized for topological quantum
computation [7–9]. The key ingredients driving these
systems into the topologically non-trivial regime are the
spin-orbit coupling (SOC) and magnetism. Recently, the
search for experimental realizations of TS has also led to
engineering the Yu-Shiba-Rusinov (YSR) [10–12] bands
induced by magnetic atoms on the surface of a supercon-
ductor [13–25]. Following this recipe, zero-energy peaks
in the tunneling spectrum were recently measured at the
ends of a one-dimensional (1D) chain of magnetic atoms
[26]. Such a tunneling spectrum could be the evidence of
the Majorana edge states, although alternative explana-
tions are also possible [27].

The interplay of SOC and magnetism has another re-
markable consequence. Consider a two-dimensional (2D)
surface of a three-dimensional (3D) material. The effec-

tive Hamiltonian of the surface h(p) = p2

2m + λ (σ × p)z
contains the Rashba SOC due to absence of the inver-
sion symmetry at the surface. Then, the velocity opera-

tor v = dh(p)
dp = p

m + λ ẑ × σ contains a spin-dependent

term that gives an extra contribution to the current

jextra = λ ẑ × 〈σ〉. (1)

A ferromagnet proximity-coupled to the superconductor
would render a finite spin polarization 〈σ〉 6= 0 and, thus,
generate a current as schematically shown in Fig. 1(a).
The phenomenon of driving a current with magnetism
is known as the magnetoelectric effect. This effect may
vanish in metals due to dissipation but survives in su-
perconductors lacking inversion symmetry [28–32]. The
magnetoelectric effect was also recently discussed in a
pure 1D model of TS [33].

In this work, we show that the magnetoelectric current
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FIG. 1. (Color online.) (a) Schematic representation of the
non-local currents (red arrows) induced by a ferromagnetic
(FM) island on the surface of a superconductor with the
Rashba SOC. GL solutions for the current around a circu-
lar ferromagnetic island (gray area) with S = S ẑ (b) and
S = S x̂ (c).

is universally generated around single magnetic impuri-
ties and ferromagnetic islands, which have been recently
studied in the context of TS [13–26]. More specifically,
we first derive the extra terms in the Ginzburg-Landau
(GL) free energy corresponding to Eq. (1). For a small
ferromagnetic island on a superconductor with SOC, we
find a strong dependence of the current on the relative
orientation of the ferromagnetic moment. The current
circulates around the ferromagnetic island and is short
ranged for the ferromagnetic moment normal to the sur-
face. On the other hand, the current has a dipolar power
law decay for the ferromagnetic moment parallel to the
surface. Next, we discuss the current generated around
a point magnetic impurity and show that the current is
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carried by the impurity-induced YSR states. We also
perform a self-consistent numerical calculation and find
a strong non-monotonic dependence of the current on
the strength of the ferromagnetic moment. The current
strongly peaks at the phase transition, where the YSR
states cross zero energy E = 0. We further demonstrate
that the current can be mapped by measuring the spin-
polarized local density of states (SP-LDOS), which, thus,
provides a probe of both the current and the phase tran-
sition. Our findings are, therefore, highly relevant for
the ongoing search of the Majorana bound states in fer-
romagnetic chains [13–26].

Ginzburg-Landau treatment. We start by considering
a ferromagnetic island deposited on a 2D surface of a con-
ventional s-wave superconductor with the Rashba SOC
as illustrated in Fig. 1(a) and described by the Hamilto-
nian

H =
1

2

∫
d2rΨ†(r) [h(p) τz + ∆ τx − S(r) · σ] Ψ(r),

h(p) =
p2

2m
+ λ (σ × p)z − µ, p = −i(∇x,∇y). (2)

Here Ψ = (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑)

T is a four component spinor,
σ and τ are the Pauli matrices acting in the spin and
particle-hole Nambu space, ∆ is the superconducting
gap, and we set e = ~ = 1. The ferromagnet and
its coupling to the superconductor are described by the
spatially-dependent vector S = (Sx, Sy, Sz). An intuitive
and qualitatively correct picture of the currents can be
derived using the GL free energy

F =

∫
d2r

[ ns
2m

A2 + α (ẑ × S)·A + β (∇Sz × ẑ)·A
]
,

A = (Ax,Ay) = A+
∇θ

2
, (3)

which is valid at length scales larger than the supercon-
ducting coherence length ξsc. In the first term propor-
tional to the superfluid density ns, vector A encapsu-
lates both the superconducting phase θ and the vector
potential A. The second and third terms describe the
coupling between the Rashba SOC and magnetism and
are derived in the Supplementary Material in detail. For
example, in the limit pFλ � mλ2 � ∆, the coefficients
are α = mλ/2π, β = m2λ2/4πp2F , and, thus, only present
at finite SOC, i.e. when λ 6= 0. The term proportional to
α, known as the magnetoelectric term [28–30, 32, 34, 35],
is allowed only in the absence of inversion symmetry.

Within the above framework, we now discuss the cur-
rents induced by a ferromagnetic island of a uniform
disc geometry, which we model as S(r) = S θH (R− r),
where θH(z) is the Heaviside theta function. We find the
current from Eq. (3) as

j =
δF

δA

∣∣∣∣
A=0

=
ns
2m

∇θ + α(ẑ × S) + β(∇Sz × ẑ). (4)

First consider the an out-of-plane ferromagnetic moment
S = S ẑ and θ constant. Then the current is given

by the last term in Eq. (4). The current is localized
near the boundary as j(r) = −βS(r̂ × ẑ) δ(r − R) and
circulates around the ferromagnetic island as shown in
Fig. 1(b). Since the GL equations are valid at r > ξsc,
the δ-function in the current solution is artificially broad-
ened to a scale of the superconducting coherence length
ξsc for visualization purposes. For an in-plane moment
S = S x̂, both of the first two terms in Eq. (4) are non-
zero. The contribution given by the term α(ẑ × S) is
constant over the region covered by the ferromagnetic
region and discontinuous at the boundary. However, the
first term ns

2m∇θ fixes this discontinuity. Indeed, the vari-
ation of the free energy over θ gives the continuity equa-
tion: 0 = ∇ · j = ns

2m∇2θ + α∇ · (ẑ × S). The last
expression is the 2D Poisson equation with a source term
that we solve for θ and plot the currents in Fig. 1(c), see
Supplementary Material for more details. The current is
constant over the region covered by the ferromagnet, i.e.
j(r) = d

R2 for r < R, and has a dipolar profile outside

of it, i.e. j(r) = 2r (d·r)
r4 − d

r2 for r > R. Here the effec-

tive “dipole” moment is defined d = αR2 1
2 (ẑ × S). We

also note that if the coefficients α and β are large, vortex
solutions for the superconducting phase θ are favored by
the free energy expression Eq. (3).
Microscopic calculation. To complement the above

GL analysis, we also study microscopically the cur-
rents generated around a single point magnetic impurity,
i.e. we set S = S δ(r) in the Hamiltonian Eq. (2). In con-
trast to the GL approach, the Green’s function method,
used below, allows to study effects to infinite order in
S and also at distances smaller than the superconduct-
ing coherence length, i.e. for r � ξsc. We evaluate the
Green’s function of the superconductor in the T-matrix
approximation

Grr′(ω) = grr′(ω) + gr0(ω)T (ω) g0r′(ω), (5)

T (ω) =
−S · σ

1 + S · σ g00(ω)
. (6)

The Green’s function of a clean superconductor in real
space at r is (for r � ξsc)

gr0(ω) = −π ω + ∆τx√
∆2 − ω2

[f0(r) + i(σ × r) f1(r)] , (7)

where f0(r) = 1
2

[
ρ+J0(p+F r) + ρ−J0(p−F r)

]
and f1(r) =

1
2r

[
ρ+J1(p+F r)− ρ−J1(p−F r)

]
, J0 and J1 are Bessel func-

tions, p±F ≈ pF ∓λm are the Fermi momenta of the spin-

polarized Rashba bands, and ρ± ≈ ρ0
p±F
2pF

are the corre-

sponding density of states (ρ0 = m/π). Equation (7) is
calculated with the assumption µ� ∆ > 0. The second,
spin-dependent, term in Eq. (7) is a consequence of the
Rashba SOC and vanishes if λ = 0. The poles of the
T-matrix give the energies of the impurity-induced YSR
subgap states [10–12, 36]

E±YSR = ±∆

[
1−

(
πρS

2

)2
]/[

1 +

(
πρS

2

)2
]
, (8)
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FIG. 2. (Color online.) (a),(c): Currents around a point magnetic impurity calculated using the T-matrix approach. The
impurity is located at r0 = 0, and the direction of the magnetic moment S is shown in the inset. The vectors in green indicate
the direction of the in-plane spin polarization determined from SP-LDOS. The current and the spin polarization are orthogonal,
which is consistent with Eq. (1). In order to enhance the figures, the currents are plotted away from the impurity, i.e. for
pF r > 2.5. (b),(d): SP-LDOS calculated at r1. The insets show the SP-LDOS in the vicinity of the positive YSR state.
Red and blue lines correspond to SP-LDOS calculated for opposite directions x̂ and −x̂, whereas the dashed green line is the
resulting spin polarization. Panels (a) and (b) correspond to the out-of-plane magnetic moment, whereas panels (c) and (d)
correspond to the in-plane magnetic moment.

which are unaffected by the Rashba SOC [37]. The ener-
gies of the YSR states, however, depend on the ferromag-
netic vector magnitude S. For a critical value S = 2/πρ,
the energies of the YSR states reach E = 0, and the
system undergoes a quantum phase transition as the two
YSR states cross [36, 38]. For simplicity, let us temporary

fix S = 2/
√

3πρ, which corresponds to E±YSR = ±∆/2.
The current is equal to the expectation value of the ve-

locity operator, which can be expressed using the Green’s
function as

j(r) = lim
r′→r
δ→+0

∫
dω eiωδ

2πi
(9)

× Tr

[
1 + τz

2

(
i
∇′ −∇

2m
+ λ ẑ × σ

)
Grr′(ω)

]
.

In addition to the usual gradient term [39] in the paren-
thesis, there is also a spin-dependent contribution due to
the Rashba SOC. We evaluate the current in Eq. (9) using
the Green’s function in Eq. (5) and plot it in Figs. 2(a)
and (c) for the cases of out-of-plane S = Sẑ and in-
plane S = Sx̂ moments, respectively. We note that only
the pole in the T-matrix corresponding to the YSR state
gives rise to non-zero currents. Both panels show concen-
tric patterns of current centered around the impurity. In
the case of the out-of-plane moment, the current circu-
lates around the impurity. In contrast, in the case of the
in-plane moment orientation, the current points predomi-
nantly in the y direction. The currents shown in Fig. 2(a)
and (c) for point magnetic impurities agree qualitatively
with the patterns obtained for the circular island within
the GL theory and shown in Figs. 1(b) and (c). However,
in contrast with Fig. 1, the currents in Fig. 2 display fine
Friedel oscillations on the scale of r ∼ 1/pF . Note that
the current in panel (c) is not continuous. This can be un-
derstood by using the analogy with the Ginzburg-Landau
current (4). For the in-plane vector S, the current con-
sists of the bare term α(ẑ×S), as well as the condensate
term ns

2m∇θ. These two disctinct contributions to the

current are discontinuous, however, their sum is continu-
ous. Since, the T-matrix calculation is not self-consistent,
it does not take into account the reaction of the conden-
sate that would fix the discontinuity. We discuss a fully
self-consistent calculation, which demonstrates the con-
tinuity of the currents, in the next section, as well as in
the Supplementary Material.

According to Eq. (1) the current and the spin polar-
ization are coupled. Thus, we expect a non-zero in-plane
spin polarization even away from the impurity site that
sustain the non-local currents shown in Figs. 2(a) and (c).
So, we evaluate the SP-LDOS using the Green’s function
as

ρjr(ω) = − 1

π
Im Tr

[
1 + τz

2

1 + σj
2

Grr(ω + iδ)

]
, (10)

where j = x, y, z denotes the polarization axis. From the
SP-LDOS we also define the energy-dependent local spin
polarization as

σjr(ω) = ρjr(ω)− ρ−jr (ω). (11)

In Figs. 2 (b) and (d), we plot both the SP-LDOS and the
spin polarization at the point r1 with solid and dashed
lines, respectively. First, consider the out-of-plane mag-
netic moment S = S ẑ in panel (b). The SP-LDOS
peaks at the superconducting coherence peak, i.e. at
ω = ∆, as well as at the subgap YSR state energy,
i.e. at ω = EYSR = ∆/2. The SP-LDOS correspond-
ing to the opposite directions j = ±x, shown with red
and blue lines, are notably different at the YSR state.
Therefore, the YSR state has a finite spin-polarization
along the x axis, shown with a dashed green line. This
feature is a consequence of the spin-structure of the
Green’s function Eq. (7) and vanishes in the absence of
the Rashba SOC. Now, consider panel (d) correspond-
ing to an in-plane moment S = S x̂. The YSR state
in this case has a dominating spin polarization in the
+x direction with only a small admixture of the oppo-
site spin. In Figs. 2(a) and (c), we plot the direction of
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FIG. 3. (Color online.) Self-consistent numerical calculation of the currents induced by a point magnetic impurity with the
out-of-plane moment S = S ẑ. (a) Bogolyubov-de Gennes spectrum (top) and magnitude of current j (bottom) as a function
of S. (b)-(d) Spatial profile of the currents plotted at discrete points on the lattice for increasing magnitude of S as indicated
in panel (a). The current reaches the maximum value jc and switches direction for S = Sc, i.e. where the YSR states cross
zero energy. Note that in order to enhance visibility of the current in panels (b) and (d), the arrows representing the current
are magnified tenfold as indicated by the magnification ratio in the top-left corner of each panel.

the in-plane spin polarization for the positive YSR state
σr(E+

YSR) = [σxr(E+
YSR) σyr(E+

YSR) ] at the point r0 = 0
as well as r1 = 7x̂/pF and r2 = 7ŷ/pF . Note that the
spin polarization of the negative YSR state is opposite,
i.e. σr(E−YSR) = −σr(E+

YSR). The current and spin po-
larization are consistently orthogonal, which agrees with
Eq. (1). So, it is possible to map the current generated
by magnetic impurities and ferromagnetic islands using
spin-polarized scanning tunneling microscopy (SP-STM).

Self-consistent numerical modeling. The T-matrix
approximation discussed above predicts currents which
are qualitatively consistent with the GL results. How-
ever, the T-matrix approach does not capture the influ-
ence of the magnetic impurity on the superconducting
order parameter. It is known that the superconducting
order is strongly renormalized and may even change sign
[36, 38, 40] in the vicinity of the magnetic impurity. In or-
der to take this into account, we also perform a fully self-
consistent numerical simulation1 of the point magnetic
impurity on a lattice [41–43] and show the results for an
out-of-plane magnetic moment S = Sẑ in Fig. 3. Panels
(b)-(d) show the current for increasing values of the fer-
romagnetic moment S. Note that the Friedel oscillations
are not fully visible here since the calculation is done for
a coherence length such that ξsc < 1/pF . In panel (a)
we show the Bogolyubov-de Gennes spectrum (top) and
the magnitude of the current (bottom) as a function of
S. For small S (b), the current circles around the impu-
rity, which is consistent with both previous Figs. 1 and
2. With further increase of S, the current grows and ul-
timately undergoes a first-order discontinuous transition

1 The numerical simulation is done on a square lattice with
nearest-neighbor hopping t = 1, spin-orbit coupling λ = 0.56t,
chemical potential µ = −4t. The superconducting gap is de-
termined self-consistently using a pair potential vsc = 5.36t.
Panels (b), (c) and (d) correspond to a magnetic impurity with
S = 1.6t, 2.72t, and 7.36t, respectively. For numerical reasons
limiting the lattice size, the pair potential is chosen such that
the superconductor coherence length is of the order of the lattice
constant.

at a critical value of magnetic vector S = Sc. There, the
current abruptly reverses direction, as shown in Fig. 3(c)
and (d), and reaches its maximal magnitude. This is
accompanied by the YSR states crossing at zero energy,
and the superconducting order parameter reversing sign
at the impurity site. We note that the YSR states also
have a first-order avoided crossing at zero energy [38] as
shown in Fig. 3(a). With further increase of S, supercon-
ductivity is suppressed and the currents diminish in the
vicinity of the impurity. More details on the numerical
simulation can be found in the Supplementary Material.

Concluding remarks. We have shown that super-
conducting currents are generated by ferromagnetic is-
lands and single magnetic impurities in 2D supercon-
ductors with spin-orbit coupling. The currents originate
from the magnetoelectric effect and are a direct conse-
quence of combining SOC and magnetism. The discussed
currents are unavoidable in ferromagnet-superconductor
heterostructures, which have been proposed as a plat-
form for topological superconductivity with the Majo-
rana boundary states [1–3, 13–26]. We find a strong de-
pendence of both the spatial pattern and magnitude of
the currents on the direction of the ferromagnetic mo-
ment. The currents are localized on the scale of the
coherence length in the case of the out-of-plane local
magnetic moment, whereas the currents have a dipolar
power law decay in the case of the in-plane magnetic mo-
ment. The presence of these non-local currents may in-
duce long-range interactions between local magnetic mo-
ments on a superconductor [44], which could qualitatively
change the behavior of the Majorana modes in such sys-
tems. Furthermore, by analyzing the currents in detail,
we find that they are carried by the subgap YSR states
induced by point magnetic impurities. The YSR states
are spin-polarized, and the current is orthogonal to the
local spin-polarization. Moreover, the current magnitude
peaks sharply at the phase transition, where the YSR
states cross at zero energy. Thus, by using SP-STM it
should be possible to map out the currents as well as de-
tect the phase transition, which is paramount for finding
TS and the Majorana modes.
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