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Motivated by the properties of the iron chalcogenides, we study the phase diagram of a generalized Heisen-
berg model with frustrated bilinear-biquadratic interactions on a square lattice. We identify zero-temperature
phases with antiferroquadrupolar and Ising-nematic orders. The effects of quantum fluctuations and interlayer
couplings are analyzed. We propose the Ising-nematic order as underlying the structural phase transition ob-
served in the normal state of FeSe, and discuss the role of the Goldstone modes of the antiferroquadrupolar order
for the dipolar magnetic fluctuations in this system. Our results provide a considerably broadened perspective
on the overall magnetic phase diagram of the iron chalcogenides and pnictides, and are amenable to tests by
new experiments.
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Introduction. Because superconductivity develops near
magnetic order in most of the iron pnictides and chalco-
genides, it is important to understand the nature of their mag-
netism. The iron pnictide families typically have parent com-
pounds which show a collinear (π, 0) antiferromagnetic or-
der [1]. Lowering the temperature in the parent compounds
gives rise to a tetragonal-to-orthorhombic distortion, and tem-
perature Ts for this structural transition is either equal to or
larger than the Néel transition temperature TN . A likely ex-
planation for Ts is an Ising-nematic transition at the electronic
level. It was recognized from the beginning that models with
quasi-local moments and their frustrated Heisenberg J1 − J2
interactions [2] feature such an Ising-nematic transition [3–6].
Similar conclusions have subsequently been reached in mod-
els that are based on Fermi-surface instabilities [7].

The magnetic origin for the nematicity fits well with the
experimental observations of the spin excitation spectrum ob-
served in the iron pnictides. Inelastic neutron scattering ex-
periments [8] in the parent iron pnictides have revealed a
low-energy spin spectrum whose equal-intensity counters in
the wavevector space form ellipses near (±π, 0) and (0,±π).
At high energies, spin-wave-like excitations are observed all
the way to the boundaries of the underlying antiferromag-
netic Brillouin zone [9]. These features are well captured by
Heisenberg models with the frustrated J1−J2 interactions and
bi-quadratic couplings [10, 11], although at a refined level it
is also important to incorporate the damping provided by the
coherent itinerant fermions near the Fermi energy [10].

Experiments in bulk FeSe do not seem to fit into this frame-
work. FeSe is one of the canonical iron chalcogenides su-
perconductors [12, 13]. In the single-layer limit, it currently
holds particular promise towards a very high Tc superconduc-
tivity [14–16] driven by strong correlations [17]. In the bulk
form, this compound displays a tetragonal-to-orthorhombic
structural transition, with Ts ≈ 90 K, but no Néel transi-
tion has been detected [18–21]. This distinction has been in-

terpreted as pointing towards the failure of the magnetism-
based origin for the structural phase transition [20, 21]. At the
same time, experiments have also revealed another aspect of
the emerging puzzle. The structural transition clearly induces
dipolar magnetic fluctuations [20, 21].

In this letter, we show that a generalized Heisenberg model
with frustrated bilinear-biquadratic couplings on a square lat-
tice contains a phase with both a (π, 0) antiferroquadrupolar
(AFQ) order and an Ising-nematic order. The model in this
regime displays a finite-temperature transition into the Ising-
nematic order and, in the presence of inter-layer couplings,
also a finite-temperature transition into the AFQ order. We
suggest that such physics is compatible with the aforemen-
tioned and related properties of FeSe. The Goldstone modes
of the AFQ order is responsible for the onset of dipolar mag-
netic fluctuations near the wave-vector (π, 0), which is exper-
imentally testable.

Model. We consider a spin Hamiltonian with S > 1 on a
two-dimensional (2D) square lattice:

H =
1

2

∑
i,δn,α,β

{
JnSi · Sj +Kn(Si · Sj)2

}
, (1)

where j = i + δn, and δn connects site i and its n’s near-
est neighbor sites with n = 1, 2, 3. Here Jn, and Kn are
respectively the bilinear and biquadratic couplings between
the n’s nearest neighbor spins. For the iron pnictides and
chalcogenides, the local moments describe the spin degrees
of freedom associated with the incoherent part of the elec-
tronic excitations and reflect the bad-metal behavior of these
systems[1, 2, 4–6]. A nonzero J3 is believed to be impor-
tant for the iron chalcogenides, especially FeTe [22]. The bi-
quadratic couplings Kn are expected to play a significant role
in multi-orbital systems with moderate Hund’s coupling [23].
The nearest neighbor coupling K1 was included in previous
studies [10, 11] to understand the strong anisotropic spin ex-
citations in the Ising-nematic ordered phase, where the ground
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FIG. 1. Momentum distribution of the dipolar (top row) and
quadrupolar (bottom row) magnetic structure factors at K2 = −1
(in (a) and (c)) and K2 = 1.5 (in (b) and (d)), respectively. Here,
J1 = J2 = 1, J3 = K3 = 0, and K1 = −1. The calculations
are done on a 40×40 lattice at T/|K1|=0.01 with up to 105 Monte
Carlo steps. In (d), besides the leading AFQ correlations at (π, 0)
and (0, π), subleading FQ correlations are observed at finite temper-
atures; as the temperature is lowered, the former is enhanced whereas
the latter is is diminished.

state has a (π, 0)/(0, π) antiferromagnetic (AFM) order. With
the goal of searching for the new physics that could describe
the properties of FeSe, in this work, we take these couplings as
variables and study the pertinent unusual phases in the phase
diagram. In the following, to simplify the discussion on the
relevant AFM and AFQ phases, we take K1 = −1 and use
|K1| as the energy unit. Note that a moderately positive K1

in the presence of further-neighborsKn couplings will lead to
similar results, but a K1 coupling alone in the absence of the
latter will not generate the physics discussed below.

Some general considerations are in order. For S > 1,

(Si · Sj)2 =
1

2
Qi ·Qj −

1

2
Si · Sj +

1

3
S2
iS

2
j , (2)

where Qi is a quadrupolar operator with five components
Qr

2−3z2
i = 1√

3
[(Sxi )

2+(Syi )
2−2(Szi )

2], Qx
2−y2
i = (Sxi )

2−
(Syi )

2, Qxyi = Sxi S
y
i + Syi S

x
i , Qyzi = Syi S

z
i + Szi S

y
i , and

Qzxi = Szi S
x
i + Sxi S

z
i . Therefore, the biquadratic interac-

tion may promote a long-range ferro/antiferro- quadrupolar
(FQ/AFQ) order. With the aforementioned motivation, we are
interested in a (π, 0) AFQ order, which would break the C4

symmetry and should yield an Ising-nematic order parameter.
Low-temperature phase diagram of the classical spin

model. We first study the model in Eq. (1) for classical spins.
For simplicity, we discuss the case K3 = 0. We have calcu-
lated the dipolar and quadrupolar magnetic structure factors
via Monte Carlo simulations using the standard Metropolis
algorithm.[24] Representative results for the structure factor
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FIG. 2. Low-temperature phase diagrams of the classical bilinear-
biquadratic Heisenberg model at (a): J1 = J2, J3 = K3 = 0 and
(b): J1 = K3 = 0, J2 = J3. Both are shown at T/|K1| = 0.01.
Dashed lines show finite-temperature crossovers between different
orders. The dominant order in each regime is labeled. In each case,
the solid line shows the mean-field phase boundary at T = 0.

data are shown in Fig. 1, for J3 = 0 and J1 = J2. The two
cases, corresponding to different values of K2, show respec-
tively dominant ferroquadrupolar (FQ) and (π, 0) AFQ corre-
lations, for the finite-size systems studied and at a very low
temperature T/|K1| = 0.01.

Overall, as shown in Fig. 2(a), we find that there are large
regimes in the phase diagram in which the FQ and (π, 0) AFQ
moments are almost ordered, while the dipolar moments co-
existing with the FQ/AFQ moments are very weakly corre-
lated. Hence in these regimes, the dominant low-temperature
order is the FQ/AFQ one. In between these, there is a regime
in which the dominant correlation occurs in the (π, 0) AFM
channel.

Similar results for the case of J1 = 0 and J2 = J3 are
shown in Fig. 2(b). A large regime with dominating FQ or
(π, 0) AFQ correlations is also found. The difference from
the case of J3 = 0 and J1 = J2 occurs in the regime with
dominant AFM correlations, for which the wavevector is now
(±π/2,±π/2) as relevant to the FeTe compound.

For 2D systems, thermal fluctuations will ultimately (in
the thermodynamic limit) destroy any order which breaks a
continuous global symmetry at any nonzero temperature [25].
The dashed lines in Fig. 2 therefore mark crossovers between
regimes with different dominant correlations. At T = 0, on
the other hand, genuine FQ/AFQ can occur in our model on
the square lattice. We have therefore also analyzed the mean-
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FIG. 3. (a): Temperature dependence of the Ising-nematic order pa-
rameters σ1 and σ2 at (a): J1 = J2 = J3 = 0, K1 = −1, and
K2 = 1; and (b): J1 = 0, J2 = J3 = 0.5, K1 = −1, and
K2 = 2. In both cases the dominant part of the Ising-nematic or-
der is σ2, which is associated with the AFQ order.

field phase diagrams at T = 0. The resulting phase boundary
is shown in each case as a solid line in Fig. 2. The results are
compatible with the crossovers identified at low but nonzero
temperatures. For the case of J3 = 0 and J1 = J2, shown in
Fig. 2(a), the phase on the left of the solid line has a mixture
of an AFM phase ordered at q = (π, 0)/(0, π) and FQ phase.
The phase on the right of the solid line has an AFQ phase or-
dered at q = (π, 0)/(0, π). Note that in the classical limit,
the spins are treated as O(3) vectors, and should always be
ordered at zero temperature. We find that in the AFQ phase,
the spins can be ordered at a wavevector (q, π)/(π, q) for ar-
bitrary q, with an infinite degeneracy.[26] Such a frustration
would likely stabilize a purely AFQ ground state when quan-
tum fluctuations are taken into account (see below). For the
case of J1 = 0 and J2 = J3, shown in Fig. 2(b), the mean-
field result also yields FQ or (π, 0) AFQ, respectively to the
left or right of the solid line. However, the wave vector for
the AFM orders that mix respectively with the FQ and (π, 0)
AFQ order have become (±π/2,±π/2).[26]

Similar to the (π, 0) AFM state, the (π, 0) AFQ phase
breaks the lattice C4 rotational symmetry. An accompanying
Ising-nematic transition is to be expected, and should develop
at nonzero temperatures even in two dimensions. We define
the general Ising-nematic operators as follows:

σn = (Si · Si+x̂)n − (Si · Si+ŷ)n, (3)

where n = 1, 2. We also introduce the quadrupolar QA/B to
be the linear superposition of Q(π, 0)/(0, π), with the ratios
of their coefficients to be ±1 respectively. From Eq. (2), we
see that for quantum spins, the Ising-nematic order associated
with Q should be seen in both σ1 and σ2. For classical spins,
since Qi ·Qj = 2(Si · Sj)2 − 2

3S
2
iS

2
j , only σ2 will manifest

QA ·QB . This allows us to determine the origin of the Ising-
nematic order in the AFQ+AFM phase. As shown in Fig. 3(a),
for the K1 −K2 model, σ2 is ordered at Tσ/|K1| ≈ 0.38 but
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FIG. 4. Calculated spin excitation spectrum in the (π, 0) AFQ phase
of the quantum S = 1 model. We have taken J1 = J2 = 0.25,
J3 = 0, K2 = 0.5, and K3 = −0.3. The color codes the dynamical
spin dipolar structure factor,

√
SxxD (q, ω).

σ1 ≈ 0 for any T > 0. Likewise from Fig. 3(b), in the case
J1 = 0 and J2 = J3, the dominant Ising nematic order pa-
rameter is σ2 for T < Tσ ≈ 0.9, and σ1 never becomes sub-
stantial down to the lowest temperature T = 10−4 accessible
to our numerical simulation. These indicate that the Ising-
nematic order in the AFQ+AFM phase is associated with the
anisotropic spin quadrupolar fluctuations.

The quantum spin models. The AFQ phase and the as-
sociated Ising-nematic transition are features of the general-
ized J − K model for both classical and quantum spins. To
consider the effect of quantum fluctuations, we consider the
case of S = 1. We study its ground-state properties via a
semiclassical variational approach by using an SU(3) repre-
sentation [27], and identify parameter regimes that stabilize
the AFQ phase. We further study the spin excitations in the
AFQ phase with ordering wavevector qA = (π, 0) using a
flavor-wave theory.[26] Because the AFQ order breaks the
continuous spin-rotational invariance, the Goldstone modes
will have non-zero dipolar matrix element [27, 28]. To explic-
itly demonstrate this, we calculate the dynamical spin dipolar
structure factor SxxD (q, ω) near qA, which is shown in Fig. 4.
Therefore, the development of the AFQ order is accompa-
nied by a sharp rise in the dynamical spin dipolar correlations
centered around the wavevector (π, 0) (and symmetry-related
wave vectors).

Effects of the coupling to itinerant fermions and interac-
tion between layers. One additional effect of the quantum
fluctuations is that it can suppress the weak AFM order when
the dominant order is AFQ. We discuss one source of such
an effect, which is the coupling of the order parameters to the
coherent itinerant fermions. The effect of coupling to the itin-
erant fermions can be treated as in Ref. [6] within an effective
Ginzburg-Landau action, and is briefly discussed in the sup-
plementary material [26]. When only the (π, 0) AFM order
and the Ising-nematic order are present, the coupling to the
itinerant fermions will suppress the AFM and Ising-nematic
order concurrently [29]. However, when the dominant order
is AFQ, the coupling to the itinerant fermions can suppress
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FIG. 5. (a): Skecthed phase diagram in terms of T and J2/K2.
The dominant order may be either AFQ or AFM. The thinner dashed
lines show the associated ordering temperautures TAFQ and TAFM .
A first-order transition (thicker dashed line) takes place at an in-
termediate J2/K2 coupling when the two transitions meet. The
Ising-nematic transition (solid line) takes place at Tσ . There can
be either a first-order Ising-nematic and AFM(AFQ) transition at
Tσ = TAFM/AFQ, or two separate transitions.

the AFM order while retaining the stronger AFQ order and
the associated Ising-nematic order.

When inter-layer bilinear-biquadratic couplings are taken
into account, a phase with a pure AFQ order can be stabilized
at finite temperature. We can then discuss the evolution of
the Ising-nematic transition as a function of the J2/K2 ratio.
Consider the case when a dominating J2 stabilizes a (π, 0)
AFM order, which is accompanied by the Ising-nematic order
parameter σ1. For sufficiently largeK2, the AFQ becomes the
dominant order, and the Ising-nematic order is predominantly
given by σ2. The schematic evolution between the two limits
is illustrated in Fig. 5. We have illustrated the case with the
quantum fluctuations having suppressed the weaker order.

We stress that, such an evolution of the Ising-nematic tran-
sition already occurs in the purely 2D model. Results from
explicit calculations on the evolution of the transition tem-
perature Tσ are shown in the Supplementary Materials.[26]
In the case of the Ising-nematic transition associated with a
(π, 0) AFM, the interlayer couplings gives rise to a nonzero
TAFM ≤ Tσ (Refs. 4–6). Similarly, when the dominant order
is a (π, 0) AFQ, such couplings lead to a nonzero TAFQ ≤
Tσ .

Implications for FeSe. General considerations suggest that
the cases of spin 1 or spin 2 are pertinent to the iron-based
materials [2]. Judging from the measured total spin spectral
weight [1], the spin 1 case would be closer to the iron pnic-
tides while the spin 2 case would be more appropriate for the
iron chalcogenides.

Accordingly, it is natural to propose that the normal state
of FeSe realizes the phase whose ground state has the (π, 0)
AFQ order accompanied by the Ising-nematic order. In this
picture, the structural transition at Ts ∼ 90 K corresponds

to the concurrent Ising-nematic and AFQ transition, as illus-
trated in Fig. 5. This picture explains why the structural phase
transition is not accompanied by any static AFM order. At
the same time, as soon as the AFQ order is developed, its
Goldstone modes will contribute towards low-energy dipo-
lar magnetic fluctuations. This is consistent with the onset of
low-energy spin fluctuations observed in the NMR measure-
ments [20, 21]. It will clearly be important to explore such
spin fluctuations using inelastic neutron scattering measure-
ments. And a quantitative comparison between the measured
and calculated spin excitation spectra would allow estimates
of the coupling constants Jn and Kn. The Goldstone modes
may also be probed by magnetoresistance, and unusual fea-
tures in this property have recently been reported [30]. Fi-
nally, the Ising-nematic order is linearly coupled not only to
the structural anisotropy, but also to the orbital order. Sim-
ilarly as for the iron pnictides [31], this would result in, for
instance, the lifting of the dxz/dyz orbital degeneracy at the
structural phase transition [32–34].

The phase diagrams given in Fig. 2 show that the AFQ
region can be tuned to an AFM region. The nature of the
AFM phase depends on the bilinear couplings. For a range
of bilinear couplings, the nearby AFM phase has the order-
ing wavevector (π/2, π/2). This provides a means to connect
the magnetism of FeSe and FeTe [35, 36], which is of consid-
erable interest to the on-going experimental efforts in study-
ing the magnetism of the Se-doped FeTe series [37]. It also
makes it natural to understand the development of magnetic
order that seems to occur when FeSe is placed under a pres-
sure on the order of 1 GPa [38–40]. Finally, we note that our
results will serve as the basis to shed new light on the nematic
correlations in the superconducting state [41–43].

Broader context. It is widely believed that understanding
the magnetism in the iron chalcogenide FeTe, where the order-
ing wavvector (π/2, π/2) has no connection with any Fermi-
surface-nesting features [35, 36], requires a local-moment
picture. The proposal advanced here not only provides an
understanding of the emerging puzzle on the magnetism in
FeSe, but also achieves a level of commonality in the un-
derlying microscopic interactions across these iron chalco-
genides. Furthermore, the connection between the AFQ or-
der and the (π, 0) AFM order suggests that the local-moment
physics, augmented by a coupling to the coherent itinerant
fermions near the Fermi energy, places the magnetism of a
wide range of iron-based superconductors in a unified frame-
work. Since local-moment physics in bad metals reflects
a proximity to correlation-induced electron localization, this
unified perspective also signifies the importance of electron
correlations [2, 44–48] to the iron-based superconductors.

Conclusions. To summarize, we have studied a general-
ized Heisenberg model with frustrated bilinear-biquadratic
interactions on a square lattice and find that the zero-
temperature phase diagram stabilizes an antiferroquadrupo-
lar order. The anisotropic spin quadrupolar fluctuations give
rise to a finite-temperature Ising-nematic transition. We pro-
pose that the structural phase transition in FeSe corresponds
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to this Ising-nematic transition and is accompanied by an an-
tiferroquadrupolar ordering. We suggest that inelastic neutron
scattering experiments be carried out to explore the proposed
Goldstone modes associated with the antiferroquadrupolar or-
der. Our results provide a natural understanding for an emerg-
ing puzzle on FeSe. More generally, the extended phase di-
agrams advanced here considerably broaden the perspective
on the magnetism and electron correlations of the iron-based
superconductors.

Note Added: During the final stage of preparing our
manuscript, a study appeared which also emphasized the
local-moment-based magnetic physics for FeSe, but invoked
a different mechanism based on possible paramagnetic Ising-
nematic ground state caused by J1-J2 frustration [49]. A dis-
tinction of the mechanism advanced here is that the AFQ or-
der yields Goldstone modes and therefore causes the onset of
low-energy dipolar magnetic fluctuations. After the present
manuscript was submitted for publication and posted on the
arXiv, results from inelastic neutron scattering experiments in
FeSe appeared [50, 51] which verified the (π, 0) magnetic ex-
citations expected from our theoretical proposal.
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